Please use this identifier to cite or link to this item: http://202.88.229.59:8080/xmlui/handle/123456789/356
Title: Creep Deformation and Rupture Behaviour of P92 Steel at 923 K
Authors: Mathew, M D
Keywords: Mechanical Engineering
P92 steel
Creep deformation
Creep-rupture
Creep ductility
Issue Date: 2013
Publisher: Procedia Engineering
Abstract: Creep deformation and rupture behaviour of P92 steel has been examined at 923 K for stresses ranging from 75 to 150 MPa. The steel exhibited well defined primary, secondary characterized by minimum creep rate and prolonged tertiary creep stages. The stress dependence of minimum creep rate obeyed Norton's power law and exhibited distinct stress regimes characterised by separate values of stress exponents in low and high stress regimes. Similarly, the stress dependence of rupture life also obeyed power law and displayed two stress regimes with separate stress exponent values. The steel displayed decrease in creep ductility with increase in rupture life in the low stress regime and followed generalised Monkman-Grant relation interrelating minimum creep rate and rupture life. Modified Monkman-Grant relation has been found to be valid for the steel. Fractographic examination indicated dominance of transgranular fracture on the fracture surfaces of tested specimens.
URI: http://202.88.229.59:8080/xmlui/handle/123456789/356
Appears in Collections:Dr. M D Mathew

Files in This Item:
File Description SizeFormat 
Full text available in central library.pdf13.72 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.