Reg. No	
	•
Name	

B.TECH. DEGREE EXAMINATION, MAY 2014

Eighth Semester

Branch: Electrical and Electronics Engineering

SWITCHGEAR AND PROTECTION (E)

(Old Scheme - Prior to 2010 Admissions)

[Supplementary/Mercy Chance]

Time: Three Hours

Part A

Answer all questions.

Each question carries 4 marks.

- 1. Write a note on circuit breaker rating.
- 2. Discuss the properties of SF₆ gas. Highlight the properties which makes it one of the best arcquenching medium.
- 8. THE LOT the Company of States Hillys Will Street Houseston.
- 4. Explain the working of induction relay.
- 5. Explain the protection against failure of excitation on generators.
- 6. Explain how the incipient fault protection is possible in transformer.
- 7. Explain the differential protection scheme in transmission line.
- 8. Explain the protection of parallel feeders.
- 9. Explain the use of ground wires in overhead transmission line.
- 10. Explain the surge impedance and velocity of propagation.

 $(10 \times 4 = 40 \text{ marks})$

Part B

Answer all questions.

Each full question carries 12 marks.

- 11. (A) (i) With the help of one line diagram of a typical power system, explain why the power system is divided into different protective zones. Give the reasons for overlapping adjacent zones of protection.
 - (ii) Derive the expression of re-striking voltage and RRRY of a circuit breaker.

(6 + 6 = 12 marks)

 O_r

Turn over

(i) With the help of neat sketch, explain the construction, principle of operation and working of an Air blast Circuit breaker with its merits and demerits.

In a short circuit test on a circuit breaker the following readings were obtained on single frequency constraint:

- (a) Time to reach the peak re-striking, $50 \mu s$.
- (b) The peak re-striking voltage, 100 kV.

Determine the average RRRV and frequency of oscillations.

(7 + 5 = 12 marks)

- 12. (A) Classify and give brief explanation of the protective relays based on:
 - (i) Technology used/construction.
 - (ii) Actuating quantity.
 - (iii) Time/PSM characteristics.

(12 marks)

Or

- (B) (i) With a neat diagram, explain the block diagram of static impedance relay.
 - (ii) Explain with sketches the negative phase sequence relay.

(6 + 6 = 12 marks)

- 13. (A) (i) With sketches, explain the stator inter turn protection of alternator.
 - (ii) A 3 phase, 11 kV, 15 MVA star connected alternator is protected by the current balancing system of protection. If the ratio of the C.T's is 1200/5, the minimum operating current of the relay is 0.7 A and the neutral point earthing is 5.5 Ω , calculate the percentage of each phase of stator winding which is unprotected against earth faults when the machine is operating at normal voltages.

(6 + 6 = 12 marks)

Or

- (B) (i) With the help of a neat diagram, explain the core balance leakage protection of transformer.
 - (ii) A 120 MVA, delta/star connected, 11/220 kV transformer is to be protected by percentage differential scheme. C.Ts used are 5000/5 and 400/1 respectively. Draw the sketch of complete scheme.

(5 + 7 = 12 marks)

14. (A) Explain the protection scheme of (i) Ring main feeder; and (ii) Radial feeder.

(12 marks)

- (B) (i) Explain why distance protection is superior to other types of protection for an overhead line.
 - (ii) What are the advantages and disadvantages of pilot wire protection in transmission line?

(7 + 5 = 12 marks)

- 15. (A) (i) What is horn gap arrester? Explain how it works. What is the purpose of inserting a resistance between horn gap arrester and line?
 - (ii) What are the causes of over voltages in an electrical system?

(7 + 5 = 12 marks)

Or

(B) Starting from fundamentals, derive the expressions for voltage and current waves propagated on long transmission line.

(12 marks)

 $[5 \times 12 = 60 \text{ marks}]$