Name.....

B.TECH. DEGREE EXAMINATION, MAY 2014

Eighth Semester

EE 010 805 G03-ADVANCED MATHEMATICS (Elective IV) (EE)

(New Scheme-2010 Admissions)

[Regular]

Time : Three Hours

Maximum: 100 Marks

Part A

Answer all questions.
Each question carries 3 marks.

- 1. Define:
 - (a) Unit step function.
 - (b) Dirac Delta function.
- 2. Show that $y(x) = \frac{1}{2}$ is a solution of $\int_{0}^{x} \frac{y(t)}{\sqrt{x-t}} dt = \sqrt{x}$.
- 3. Define beta function. Prove that $\beta(m, n) = \beta(n, m)$.
- 4. Prove that $\frac{d}{dx}(J_0(x)) = -J_1(x)$.
- 5. Classify the partial differential equation $2 U_{xx} + 4 U_{xy} + 3 U_{yy} = 0$.

 $(5 \times 3 = 15 \text{ marks})$

Answer all questions.

Each question carries 5 marks.

- 6. Find the derivative of Unit Step Function.
- 7. Find the integral equation corresponding to y'' + xy = 1 with y(0) = 0, y'(0) = 0.
- 8. Prove that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$.

Turn over

- 9. Prove that $J_{1/2}(x) = \sqrt{\frac{2}{\pi x}} \sin x$.
- 10. Using Crank-Nicholson method solve $U_{xx} = 16 U_t$, 0 < x < 1, t > 0 given u(x, 0) = 0, u(0, t) = 0, u(1, t) = 100t. Compute u for one step in t direction taking $h = \frac{1}{4}$.

 $(5 \times 5 = 25 \text{ marks})$

Part C

11. What is Green's Function. Find Green's Function associated with y'' + y = 1 + x, $y(0) = y(\frac{\pi}{2}) = 0$.

Or

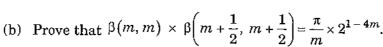
- 12. State and prove five properties of dirac delta function.
- 13. Obtain most general solution of $y(x) = \sin x + \lambda \int_{0}^{2\pi} \cos(x+t)y(t)dt$.

Or

- 14. Find the Eigen value and Eigen Function for the symmetric kernel $y(x) = \lambda \int_{-1}^{1} (x+t)y(t)dt$.
- 15. Prove that $\Gamma(m) \times \Gamma(m + \frac{1}{2}) = \frac{\sqrt{\pi}}{2^{2m-1}} \Gamma(2m)$, where m is positive.

Oi

16. (a) Prove that $\int_{0}^{1} \frac{1}{\sqrt{1-x^4}} dx = \frac{\sqrt{\pi}}{4} \frac{\Gamma\left(\frac{1}{4}\right)}{\Gamma\left(\frac{3}{4}\right)}.$



- 17. Prove that:
 - (a) $J_{-n}(x) = (-1)^n J_n(x)$, where n is a positive integer.
 - (b) $x J'_n(x) = nJ_n(x) x J_{n+1}(x)$.

- 18. State and prove Rodrigues Formulae.
- 19. Solve $\nabla^2 u = 8x^2y^2$ for the square mesh given u = 0 on the four boundaries diving the square mesh into 16 sub-squares of length one unit.

Or

20. Solve
$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$$
 given $u(0, t) = 0$, $u(4, t) = 0$, $u(x, 0) = x(4 - x)$ assuming $h = k = 1$.

 $(5 \times 12 = 60 \text{ marks})$

