Name.....

B.TECH. DEGREE EXAMINATION, MAY 2016

Seventh Semester

Branch: Mechanical Engineering

ME 010 702—DYNAMICS OF MACHINES (ME)

(New Scheme-2010 Admission onwards)

[Improvement/Supplementary]

Time: Three Hours

Maximum: 100 Marks

Part A

Answer all questions.

Each question carries 3 marks.

- 1. State the principle of "transference of a force from one plane to another".
- 2. Define viscous damping.
- 3. Write a note on "torsionally equivalent shaft".
- 4. Discuss the importance of shock spectrum.
- 5. Write a note on "musical scale".

 $(5 \times 3 = 15 \text{ marks})$

Part B

Answer all questions.

Each question carries 5 marks.

- 6. Discuss balancing of in-line engines.
- 7. Explain the behaviour of an underdamped system.
- 8. Explain Durkerly's method.
- 9. Write the applications of Laplace transformations in vibrations.
- 10. With sketches, explain equivalent sound level and loudness contours.

 $(5 \times 5 = 25 \text{ marks})$

Part C

Answer all questions.

Each full question carries 12 marks.

11. A single cylinder reciprocating engine has a reciprocating mass of 60 kg. The crank rotates at 60 r.p.m. and the stroke is 320 mm. Mass of revolving parts at 160 mm. radius is 40 kg. If two-thirds of the reciprocating parts and the whole of revolving parts are to be balanced, determine the balance mass required at a radius of 350 mm.

Program on which we have the

LIBRAF

00

Turn over

- 12. Discuss the steps in balancing of V-engines. Explain direct crank and reverse crank techniques.
- 13. In a single-degree damped vibrating system, a suspended mass of 8 kg. makes 30 oscillations in 18 seconds. The amplitude decreases to 0.25 of initial value after 5 oscillations. Determine:

 (i) Stiffness of spring; (ii) Logarithmic decrement; (iii) Damping factor; and (iv) Damping coefficient.

Or

- 14. Derive an expression for amplitude of vibrations in forced-damped vibration system.
- 15. Explain the following concepts, with neat sketches:-

(i) Lumped mass system.

(6 marks)

(ii) Distributed mass system.

(6 marks)

Or

- 16. Explain all the principal modes of vibration. What are rectilinear and angular modes? Discuss.
- 17. A machine weighing 3.5 kg. vibrates in a viscous medium. A harmonic exciting force of 40 N acts on the machine and produces a resonant amplitude of 18 mm. with a period of 0.2 second. Determine the damping coefficient.

Or

- 18. Explain the characteristics of forced vibration with non-linear forces. Derive the Duffing's equation from fundamentals.
- 19. Discuss the Doppler effect. Explain the working of loud speakers and microphones.

Or

20. Explain all the research issues in industrial noise control. Discuss the precautions for environmental noise control.

 $[5 \times 12 = 60 \text{ marks}]$