G	1	3	3	5
---	---	---	---	---

(Pages: 3)

Reg. No.....

Name.....

B.TECH. DEGREE EXAMINATION, MAY 2016

Seventh Semester

Branch: Electrical and Electronics Engineering

EE 010 704—MODERN CONTROL THEORY (EE)

(New Scheme-2010 Admission onwards)

[Improvement/Supplementary]

Time: Three Hours

Maximum: 100 Marks

Part A

Answer all questions.

Each question carries 3 marks.

- 1. Explain the concept of controllability and observability in closed loop control system.
- 2. State and explain the different non-linearities present in practical control system.
- 8. Write a short note on different methods of Analyzing non-linear systems.
- 4. State and explain the "Sampling Theorem" what is anti-alias filter?
- 5. What are different selection criteria of PLC?

 $(5 \times 3 = 15 \text{ marks})$

Part B

Answer all questions.

Each question carries 5 marks.

- 6. Write a short note on pole placement design using state variable feedback.
- 7. Explain the Isocline method of plotting phase-plane trajectories.
- 8. Derive the describing function of dead-zone non-linearity.
- 9. Write down the advantages, limitations and applications of Z-transform.
- 10. Write down the rules for proper construction of ladder diagram.

 $(5 \times 5 = 25 \text{ marks})$

Part C

Answer all questions.

Each full question carries 12 marks.

11. Design a full order observer for :

$$A = \begin{bmatrix} 0 & 20.6 \\ 1 & 0 \end{bmatrix}; B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}; C = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

Assume the desired eigenvalues of the observer

$$\mu_1 = -1.8 + 2.4 \ j$$
; $\mu_2 = -1.8 - 2.4 \ j$.

Or

12. Judge the controllability of the system with below mentioned state equation:

$$\dot{x} = Ax + Bu = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} u.$$

- 13. Explain the below mentioned terms with neat diagram with respect to phase portrait:
 - (a) Centre or vortex point.
- (b) Focus point.

(c) Saddle point.

(d) Nodal point.

Or

- 14. Write a short note on Linearization and stability of equilibrium points with reference to the phortrait.
- 15. Plot roughly the nature of phase portrait for standard second order system with :
 - (a) $\zeta = 1$.

(b) $\zeta > 1$

(c) $\zeta < 1$.

(d) $\zeta = 0$.

Or

- 16. Derive the describing function of saturation non-linearity.
- 17. Given a z.o.h. in cascade with $G_1(s) = (s+2)/(s+1)$ or

$$G(s) = \frac{1 - e^{-Ts}}{s} \frac{(s+2)}{(s+1)}$$

Find the sampled-data transfer function, G(z), if the sampling time T, is 0.5 second.

18. Derive the convolution theorem using Z-transform i.e.,

If
$$x_1(n) \stackrel{Z}{\longleftrightarrow} X_1(Z)$$
 and $x_2(n) \stackrel{Z}{\longleftrightarrow} X_2(Z)$

Then
$$x_1(n) * x_2(n) \stackrel{\mathbb{Z}}{\longleftrightarrow} X_1(\mathbb{Z}), X_2(\mathbb{Z})$$

and ROC is at least the intersection of ROC of $X_1(Z)$ and $X_2(Z)$.

19. Draw the ladder diagram for the following function table:

20. Explain speed control of DC motor using PLC.

 $(5 \times 12 = 60 \text{ marks})$