	1	1	ດ	_
U	T	1	Z	5

(Pages: 2)

Reg.	No
------	----

Name.....

B.TECH. DEGREE EXAMINATION, MAY 2016

Seventh Semester

Branch: Electrical and Electronics Engineering

CONTROL SYSTEMS - II (E)

(Old Scheme-Prior to 2010 Admissions)

[Supplementary/Mercy Chance]

Time: Three Hours

Maximum: 100 Marks

Part A

Answer all questions.
Each question carries 4 marks.

- 1. Briefly explain the difference between lag and lead compensators.
- 2. Briefly explain the characteristics of cascade compensation.
- 3. State and explain July's stability criterion.
- 4. State sampling theorem and discuss its significance.
- 5. Briefly discuss the classification of singular points.
- 6. Briefly discuss any three non-linearities present in physical systems.
- 7. What is state transition matrix?
- 8. Briefly explain the non-uniqueness at the set of state variables with an example.
- 9. Briefly discuss the terms controllability and observability.
- 10. Derive the relation between transfer function and state space model of a system.

 $(10 \times 4 = 40 \text{ marks})$

Part B

Answer all questions.

Each full question carries 12 marks.

11. The open loop T.F. of a system is $\frac{10}{s(s+4)}$. Design a lag compensator such that the velocity error constant is increased to $50 \, \text{sec}^{-1}$ without appreciably changing the location of dominant poles at $-2 \pm j\sqrt{6}$ using root locus method.

Or

12. Explain the steps involved in the design of a lead compensator using Bode plot with an example.

G

13. The open loop T.F. of a unity feedback discrete time system is given by:

GH(z) =
$$\frac{K(0.368z + 0.264)}{z^2 - 1.36z + 0.368}$$
. Determine the range of K for stability using Jury's test.

Or

14. Obtain the solution for:

$$y(k+3)+2y(k+2)+3y(k+1)+y(k)=r(k)$$

where r(0) = 1 and r(k) = 0 for k < 0.

15. Identify and classify the singularities of the system whose differential equation is given by:

$$\ddot{y} + 0.5\dot{y} + 2y + y^2 = 0.$$

Also sketch the phase trajectories near the singular point.

Or

- 16. Obtain the describing function of a saturation non-linearity.
- 17. A system is represented by the equation:

$$\dot{\mathbf{X}} = \begin{bmatrix} 0 & 2 \\ -2 & -5 \end{bmatrix} \mathbf{X} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \mathbf{u}$$
$$\mathbf{y} = \begin{bmatrix} 2 & 1 \end{bmatrix} \mathbf{X} \qquad \mathbf{X}(0) = \begin{bmatrix} 1 & 2 \end{bmatrix}^{\mathrm{T}}.$$

Determine the time response of the system.

 O_{i}

- 18. A system matrix is given by $A = \begin{bmatrix} 2 & 1 & 4 \\ 0 & 2 & 0 \\ 0 & 3 & 1 \end{bmatrix}$. Determine the state transition matrix.
- 19. Determine a suitable state representation for the difference equation:

$$y(k+3)+3y(k+2)+2y(k+1)+y(k)=u(k+2)+2u(k+1)+u(k)$$
.

 O_{1}

20. A system has the T.F. $\frac{y(s)}{u(s)} = \frac{s+6}{s^2+5s+6}$. Check the controllability and observability of the system.

 $(5 \times 12 = 60 \text{ marks})$