5+ New (EC) Central Library G 705 (Pages: 2) Reg. No..... Name..... # **B.TECH. DEGREE EXAMINATION, MAY 2014** #### Seventh Semester Branch: Electronics and Communication Engineering EC 010 701—VLSI DESIGN (EC) (Improvement/Supplementary) [2010 admissions] Time: Three Hours Maximum: 100 Marks ## Part A Answer all questions. Each question carries 3 marks. - 1. Discuss the need for an epitaxial layer. - 2. Write a note on vias. - 3. Discuss the features of CPL. - 4. Explain the features of BiCMOS Technology. - 5. Explain the advantages of the use of FPGA in IC design. $(5 \times 3 = 15 \text{ marks})$ #### Part B Answer all questions. Each question carries 5 marks. - 6. Write a note on metallization. - 7. Explain the advantages of Si gate technology. - 8. Explain latchup in CMOS. - 9. Explain how the electrical and physical parameters of CMOS transistor vary with scaling. - Explain channeling effect. $(5 \times 5 = 25 \text{ marks})$ ## Part C Answer all questions. Each question carries 12 marks. 11. Explain Czochralski process. Give the features of Cz grown Si. (12 marks) Or 12. Explain the process of ion implantation. (12 marks) Turn over | 13. | Explain the different techniques used in the isolation of components in IC fall | orication. | | |-----|--|------------------------------------|--| | | | (12 marks) | | | | Or | • | | | 14. | Explain the design of monolithic resistors and capacitors. | (12 marks) | | | : | Discuss the implementation of a XOR gate using CMOS logic. Implement the same using TG | | | | 15. | Compare them. | (12 marks) | | | | Or | | | | 16. | Explain stick diagrams and their use in IC layout. Draw the stick diagram of gate. | f a two input NAND
(12 marks) | | | 17. | The state of s | (6 marks) | | | | | e. If Yes/No explain. | | | | (b) Explain the concept of scaling. Can tails be directly improved | (6 marks) | | | | \cdot Or | | | | 18. | . (a) Explain the structure of BiCMOS two input NOR gate. Compare it with i | s CMOS counterpart. | | | | | (7 marks) | | | | (b) Explain the VI characteristics of a CMOS inverter. | (5 marks) | | | 10 | - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | (7 marks) | | | 19. | DI De | (5 marks) | | | | (b) Write a note on PLDs. Or | | | | | | (7 marks) | | | 20. | | (5 marks) | | | | (b) Compare Si and GaAs technologies. | · | | | | | $[5 \times 12 = 60 \text{ marks}]$ | |