	621
V.	054

Time: Three Hours

(Pages: 2)

Name.....

B.TECH. DEGREE EXAMINATION, MAY 2014

Seventh Semester

Branch: Computer Science and Engineering

THEORY OF COMPUTATION (R)

(Old Scheme—Prior to 2010 admissions)

[Supplementary]

Maximum: 100 Marks

Part A

Answer all questions. Each question carries 4 marks.

- 1. What are equinumerous sets?
- 2. Explain a non-computable function with an example.
- 3. Define the term epsilon closure with example.
- 4. Design the NFA accepting the language over the alphabet (0, 1) that have the set of strings which contain 01 as substring.
- 5. Explain the instantaneous description of a PDA.
- 6. Explain any one application of PDA.
- 7. Design a Turing machine to add two numbers.
- 8. Explain the term Godelization.
- 9. What is meant by polynomial time reducibility?
- 10. Explain any one class P problem.

 $(10 \times 4 = 40 \text{ marks})$

Part B

Answer all questions.

Each full question carries 12 marks.

11. Briefly explain diagonalisation principle with an example.

(12 marks)

12. What is a primitive recursive function. Show that f(x, y) = x * y is primitive recursive.

(6 + 6 = 12 marks)

Turn over

13. State the pumping lemma for regular languages. Prove that the language:

 $L = \{O^P / \text{ where } P \text{ is prime}\}$ is not regular.

(6 + 6 = 12 marks)

Or

14. Let L be a language accepted by an NFA. Prove that there exist a DFA that accepts L.

(12 marks)

15. Design a push-down automata which accepts the language $L = \{a^n b^{2n} / n > 1\}$ over $\sum \{a, b\}$.

(12 marks)

Or

16. Briefly explain the different steps involved in the simplification of context free grammar.

(12 marks)

17. What is a universal tuning machine? Show that the universal language is undecidable.

(4 + 8 = 12 marks)

Or

18. Design a Turing machine which accepts the language, $L = \{a^{2n}b^n / x > = 0\}$ over $\Sigma = \{a, b\}$.

(12 marks)

19. Briefly explain the terms:

- (a) NP.
- (b) NP-complete.
- (c) NP hard.

(4 + 4 + 4 = 12 marks)

Or

20. Prove that travelling salesman problem is NP-complete.

(12 marks)

 $[5 \times 12 = 60 \text{ marks}]$