	LIBRARY IN
Reg.	No
Nam	e

B.TECH DEGREE EXAMINATION, MAY 2015

Sixth Semester

Branch: Automobile Engineering/Mechanical Engineering

AU 010 605/ME 010 605—MECHATRONICS AND CONTROL SYSTEMS (AU, ME)

(New scheme—2010 admission onwards)

[Regular/Improvement/Supplementary]

Time: Three Hours

Maximum: 100 Marks

Part A

Answer all questions.
Each questions carries 3 marks.

- 1. Define transducer with an example.
- 2. Explain any two type of network systems.
- 3. Explain openloop control.
- 4. What is the effect of gain margin in linear control theory.
- 5. What is the physical significance of order of a system?

 $(5 \times 3 = 15 \text{ marks})$

Part B

Answer all questions.

Each questions carries 5 marks.

- 6. A thermometer has a time constant 2.5 seconds. It is quickly taken form a temperature 0°C to a liquid bath having a temperature 200°C. Calculate the temperature indicated by the thermometer after a time of 1.5 seconds.
- 7. Draw a ladder programme for a NAND gate and explain each step.
- 8. Explain the physical significance of pole position in stability analysis.
- 9. Write short note on protocols in communication?
- 10. Explain the working of a solenoid switch.

 $(5 \times 5 = 25 \text{ marks})$

Turn over

Part C

Answer all questions.

Each question carries 12 marks.

11. Design a mechatronics system to sort coins. Explain various sensors and actuators requires for this system. Represent the design in block diagram.

01

- 12. With the help of symbols explain any four types of pneumatic directional control valves.
- 13. With the help of a PLC automate a punching process, explain its ladder logic.

Or

- 14. Explain:
 - (i) Electro mechanical system.
 - (ii) Interfacing.
 - (iii) Recording of CD.
- 15. Write the governing equation of the mechanism given below.

Or

16. Derive the transfer function of the given rotating system, take the spring constant of shaft as K.

- 17. Analysis the stability of the system and find the values of k for which the system is stable:
 - (i) $2S^3 + 6S^2 + k = 0$.
 - (ii) $2S^2 + 10S + k + 1 = 0$.

Or

- 18. A unit feedback system is characterized by an openloop transfer function G(s) = K/s (s + 10). Determine the gain K, so that the system will have a damping ratio of 0.5 for this value of K. Determine settling time, peak overshoot for a unit step input.
- 19. Sketch the Bode plot for the system whose transfer function is $10/(s^2 + 6s + 10)$.

Or

20. A unit feedback system has an openloop transfer function $G(s) = k/s(s^2 + 4s + 13)$. Sketch the root locus.

 $(5 \times 12 = 60 \text{ marks})$

