Reg. No.....

Name.....

B.TECH. DEGREE EXAMINATION, MAY 2016

Sixth Semester

Branch: Electrical and Electronics Engineering

DIGITAL SIGNAL PROCESSING (E)

(Old Scheme-Prior to 2010 Admissions-Supplementary/Mercy Chance)

Time: Three Hours

Maximum: 100 Marks

Part A

Answer all questions.
Each question carries 4 marks.

- 1. Derive the necessary and sufficient condition for an LTI system to be BIBO stable.
- 2. Test the following systems for time variance?
 - (a) $y(n) = nx^2(n).$
 - (b) $y(n) = a^{x(n)}$.
- 3. Find the DFT of the sequence.
- 4. How will you perform linear convolution via circular convolution?
- 5. State convolution properties of Z-transform.
- 6. Define Z-transform. What are the two types of Z-transform?
- 7. What is linear phase? What is the condition to be satisfied by the impulse response in order to have a linear phase?
- 8. Explain the Kaiser Window function.
- 9. Give the bilinear transformation.
- 10. What are the properties of Butterworth filter and Chebyshev filter?

 $(10 \times 4 = 40 \text{ marks})$

Part B

Answer all questions.

Each full question caries 12 marks.

11. Die he classification of discrete time signals with examples.

Or

ove properties of Fourier transform.

int DIT-FFT for the following sequences

0, 0, 0, 0, 0}.

14. Perform the circular convolution of the following two sequences.

$$x_1(n) = \{2 \ 1 \ 2 \ 1\}, x_2(n) = \{1 \ 2 \ 3 \ 4\}.$$

15. Find the inverse Z Transform of the function X(Z) = Z/(Z-1)(Z-2)(Z-3). Using partial fraction method for ROC $\mid Z \mid > 3, 3 > \mid Z \mid > 2$ and $\mid Z \mid < 1$.

Or

- Obtain the cascade and parallel form realization for the system $y(n) = -0.1 \ y(n-1) + 0.2 \ y(n-2) + 3 \ x(n) + 3.6 \ x(n-1) + 0.6 \ x(n-2).$
- 17. Design an ideal differentiator with frequency response $H(e^{j\omega}) = j\omega, -\pi \le \omega \le \pi$ using rectangular window with N = 8. Plot frequency response.

Or

18. Design an ideal high pass filter with a frequency response

$$H_d(e^{j\omega}) = 1, \quad \pi/4 \le |\omega| \le \pi$$

= 0. $|\omega| < \pi/4$.

Find the transfer function $\mathbf{H}(z)$ using Hamming window. Plot the magnitude response.

Design a Chebyshev filter with a maximum pass band attenuation of 2.5 dB ; at $\Omega_p = 20$ rad/sec and the stop band attenuation of 30 dB at ' $\Omega_s = 50$ rad/sec.

20. Draw and explain the architecture of TMS 320C50 processor.

 $(5 \times 12 = 60 \text{ marks})$

TOTTA