Reg.	No
•	***************************************

B.TECH. DEGREE EXAMINATION, MAY 2016

Sixth Semester

Branch: Electronics and Communication Engineering EC 010 603—RADIATION AND PROPAGATION (EC)

(New Scheme-2010 Admission onwards)

[Regular/Improvement/Supplementary]

Time: Three Hours

Maximum: 100 Marks

Part A

Answer all questions.
Each question carries 3 marks.

- 1. Define Radiation Resistance.
- 2. Write short notes on plasma antennas.
- 3. State Reciprocity theorem.
- 4. What is meant by Radiation intensity?
- 5. Define existed

 $(5 \times 3 = 15 \text{ marks})$

Part B

Answer all questions.

Each question carries 5 marks.

- 6. Explain briefly about binomial arrays.
- 7. What is meant by fading? What are the different types of fading?
- 8. How will you measure impedance of an antenna?
- 9. Write short notes on Maximum Usable Frequency (MUF).
- 10. Derive the equation for field strength of space wave.

 $(5 \times 5 = 25 \text{ marks})$

Part C

Answer all questions.
 Each full question carries 12 marks.

11. Derive the power radiated and radiation resistance of half wave depole.

Or

- 12. Write short notes on : (a) Effective height ; (b) Effective aperture and derive the relationship between effective aperture and directivity.
- 13. Derive the equation for field strength at a distant point due to n isotropic point sources.

Or

- 14. Define Broadside Array. How will you design a BSA cobat are the properties of BSA.
- 15. Explain the principle and working of Helical antenna.

Or

- 16. Explain briefly:
 - (a) Microstrip antennas.
 - (b) Yagi-Uda antenna.
- 17. Explain the effect of earth's magnetic field on effective dielectric constant of ionised regions.

Or

- 18. Write short notes on:
 - (a) Skip distance;
 - (b) Virtual height;
 - (c) Diversity Reception.
- 19. How will you measure the directional pattern and gain of an antenna?

Or

20. Define the steps to measure the range of an antenna.

 $(5 \times 12 = 60 \text{ marks})$

