

B.TECH. DEGREE EXAMINATION, MAY 2014

Sixth Semester

Branches : Applied Electronics and Instrumentation/Electronics and Communication/ Electronics and Instrumentation Engineering

AI 010 602/EC 010 602/EI 010 602—DIGITAL SIGNAL PROCESSING (AI, EC, EI)

(New Scheme-2010 Admission onwards)

[Regular/Improvement/Supplementary]

Time: Three Hours

Maximum : 100 Marks

Part A

Answer all questions briefly. Each question carries 3 marks.

- 1. Determine if the system $y(n) = e^{x(n)}$ is time invariant or not?
- 2. Find the transfer function description of the system difference equation

$$y(n) = x(n) - b_1 y(n-1) - b_2 y(n-2)$$
, where $x(n)$ is input and $y(n)$ is the output.

- 3. Draw the frequency response characteristics for the ideal low-pass, band-pass and high-pass filters.
- 4. Write the equations specifying Barlett and Hamming windows.
- 5. Obtain the linear convolution of the sequences $x(n) = \{1, 2, 3\}$, $h(n) = \{-1, -2\}$ using circular convolution.

 $(5 \times 3 = 15 \text{ marks})$

Part B

Answer all questions.

Each question carries 5 marks.

- 6. Find the z-transform of $x(n) = n2^n \sin(\pi/2 n) u(n)$.
- 7. Solve the difference equation, where input sequence is $x(n) = 3^{n-2}$, $n \ge 0$, using z-transform, where

$$2y(n-2)-3y(n-1)+y(n)=x(n)$$
 with the initial conditions: $y(-2)=\frac{-4}{9}$, $y(-1)=-\frac{1}{3}$.

8. Draw the cascade and parallel form realisations of $\frac{(4s+28)}{(s+1)(s+5)}$

Turn over

In a band-pass filter, the desired frequency response is:

$$\mathbf{H_d}\left(e^{jw}\right) = egin{cases} e^{-jw\tau} &, & w_{c_1} \le |w| \le w_{c_2} < \pi \\ 0 &, & \mathrm{otherwise} \end{cases}$$

Obtain the filter coefficients for a rectangular window for

$$N = 7$$
, $w_{c_1} = 1$ rad/s, $w_{c_2} = 2$ rad/s, $\tau = \frac{(N-1)}{2}$.

10. Compute the DFT of the sequence whose values for one period is given by $\tilde{x}(n) = \{1, 1, -2, -2\}$. $(5 \times 5 = 25 \text{ marks})$

Part C

Answer all questions.

Each question carries 12 marks.

11. Calculate the frequency response for the LTI system representation below:

(a)
$$h(n) = \left(\frac{1}{2}\right)^n u(n)$$
.

(b)
$$h(n) = \delta(n) - \delta(n-1)$$
.

(e)
$$h(n) = (0.9)^n (e^{j\pi/2})^n u(n)$$
.

Or

- 12. A causal LTI system is described by the difference equation y(n) ay(n-1) = bx(n) + x(n-1)where 'a' is real and less than 1 in magnitude. Find a value of 'b' $(a \neq b)$ such that the frequency response of the system satisfies $|H(e^{jw})| = 1$ for all w.
- 13. For the LSIV system $H(s) = \frac{z a^{-1}}{z a}$, where 'a' is real.
 - For what range of values of 'a' is the system stable?
 - If $0 < \alpha < 1$, plot the pole-zero diagram and shade the ROC.
 - Show graphically in the z-plane that this system is an all pass system.

G 361

14. Find H(z), and the frequency response of $h(n) = \left(\frac{1}{2}\right) \left[\left(\frac{1}{2}\right)^n + \left(\frac{-1}{4}\right)^n\right] u(n)$ substituting $z = e^{jw}$.

Locate the zeros and poles in the z-plane.

15. (a) Determine the direct form realisation of the system function

$$H(z) = 1 + 2z^{-1} - 3z^{-2} - 4z^{-3} + 5z^{-4}$$

(b) Obtain the cascade realisation of the system function $H(z) = 1 + \frac{5}{2}z^{-1} + 2z^{-2} + 2z^{-3}$.

Or

16. Design an ideal low-pass filter with frequency response

$$\begin{aligned} \mathbf{H}_d\left(e^{jw}\right) &= 1 \quad \text{ for } -\frac{\pi}{2} \leq w \leq \frac{\pi}{2} \\ &= 0 \quad \text{ for } -\frac{\pi}{2} \leq |w| \leq \pi. \end{aligned}$$

Find the values of h(n) for N = 11.

17. Design a filter with $H_d\left(e^{-jw}\right)=e^{-j3w}$, $\frac{-\pi}{4}\leq w\leq \frac{\pi}{4}$ $=0 , \frac{\pi}{4}<|w|\leq \pi.$

Use Hanning window with N = 7.

Or

18. Using Bilinear Transformation design a digital band-pass Butterworth filter with the following specifications:

Sampling frequency f = 8 kHz

 $\alpha_{\rm p}$ = 2 dB in the pass-band 800 Hz $\leq f \leq$ 1000 Hz

 $\alpha_{\rm s}$ = 20 dB in the stopband, $0 \le f \le 400\,{\rm Hz}$ and $2000 \le f \le \infty$.

19. Find the output of y(n) of a filter whose impulse response in $h(n) = \{1, 1, 1\}$ and input signal $x(n) = \{3, -1, 0, 1, 3, 2, 0, 1, 2, 1\}$ using (a) overlap-save method; and (b) overlap-add method.

Or

20. Find the DFT of a sequence $x(n) = \{1, 2, 3, 4, 4, 3, 2, 1\}$ using DIT algorithm.

 $(5 \times 12 = 60 \text{ marks})$