$\overset{\widehat{G}}{G}$ 357

(Pages: 2)

Reg.	No

Name.....

B.TECH. DEGREE EXAMINATION, MAY 2014

Sixth Semester

Branch: Electronics and Communication Engineering

EC 010 601 - DIGITAL COMMUNICATION TECHNIQUES (ÈC)

(New Scheme - 2010 Admission onwards)

[Regular/Improvement/Supplementary]

[hegular/Improvement/Oupprementary

Part A

Answer all questions briefly. Each question carries 3 marks.

- 1. What is Correlation? Explain the different types.
- 2. Explain a ML Receiver.

Time: Three Hours

- 3. What is Companding? Explain.
- 4. What is the need of equalizer in digital transmission? Briefly explain.
- 5. Explain about BPSK Signal.

 $(5 \times 3 = 15 \text{ marks})$

Maximum: 100 Marks

Part B

Answer all questions.

Each question carries 5 marks.

- 6. Write the differences between:
 - (a) Sample function and Random process.
 - (b) Wide sense stationarity and Strict sense stationarity.
- 7. Write the properties of matched filter receiver.
- 8. With a diagram, explain the generation of PPM Signal.
- 9. Explain modified duobinary signalling scheme.
- 10. Explain about Trellis coded modulation.

 $(5 \times 5 = 25 \text{ marks})$

Turn over

Part C

Answer all questions.

Each question carries 12 marks.

11. With a suitable example, explain Gram-Schmidt orthogonalization procedure.

(12 marks)

Or

- 12. (a) Derive the mean and auto correlation function at the output of a LTI System when a Stationary random process X (t) is given at the input.
 - (b) Write the properties of P.S.D.

(8 + 4 = 12 marks)

- 13. (a) With a neat block diagram, explain the operation of a matched filter receiver.
 - (b) Briefly explain a method to detect signals with unknown phase in noise.

(7 + 5 = 12 marks)

O

- 14. (a) Derive the likelihood equation of ML estimation.
 - (b) Write the difference between Correlation receiver and a Matched filter receiver.
- 15. State and prove Sampling theorem.

(7 + 5 = 12 marks)

(12 marks)

Or

- 16. (a) With an example, explain quantization in PCM.
 - (b) Explain with a block diagram, the working of adaptive delta modulator.

(6 + 6 = 12 marks)

17. What is ISI? What is the reason for ISI? Explain the Nyquist criterion for distortionless base band binary transmission.

(12 marks)

Or

- 18. (a) Explain the following:
 - (i) Bit synchronization.
 - (ii) Frame synchronization.
 - (b) What is eye pattern? Explain.

(8 + 4 = 12 marks)

19. Draw the transmitter, receiver block diagrams of BFSK system. Also write the basis functions, signal constellation points and also draw the signal space diagram.

(12 marks)

Or

- 20. Explain:
 - (i) M-asy PSK system.
 - (ii) M-asy QAM.

(6 + 6 = 12 marks)

 $\{5 \times 12 = 60 \text{ marks}\}$