Reg. No	LIBRARY)
Name	TOTTAYAU*

B.TECH. DEGREE EXAMINATION, MAY 2015

Sixth Semester

Branch: Electronics and Communication Engineering

EC 010 6060 L01—DATA STRUCTURES AND ALGORITHMS (Elective I) (EC)

(New Scheme-2010 Admission onwards)

[Regular/Improvement/Supplementary]

Time: Three Hours

Maximum: 100 Marks

Part A

Answer all questions.
Each question carries 3 marks.

- 1. Differentiate between a linear data structure and a non-linear data structure.
- 2. Explain the term connected graph. Give an example.
- 3. What is a heap data structure? Give an example.
- 4. Analyse the best, worst and average case of a linear search algorithm.
- 5. Explain traveling salesman problem.

 $(5 \times 3 = 15 \text{ marks})$

Part B

Answer all questions.
Each question carries 5 marks.

- 6. Write an algorithm to delete an element from a queue represented using:
 - (i) array representation;
 - (ii) linked list representation.
- 7. Discuss the following terms related to a binary search tree with proper examples:
 - (a) Complete binary tree;
 - (b) Full binary tree;
 - (c) Height of a binary tree.
- 8. Discuss bubble sorting algorithm. Illustrate its working with an example.
- 9. Explain dynamic programming strategy for problem solving. Give an example for a problem that can be solved using dynamic programming.
- 10. Analyse merge sort algorithm.

 $(5 \times 5 = 25 \text{ marks})$

Turn over

Part C

Answer all questions. Each question carries 12 marks.

11. Discuss an algorithm to multiply two polynomials represented using linked lists.

Or

- 12. Discuss an algorithm to implement insertion and deletion operation in a stack represented using double linked list.
- 13. Illustrate with the help of an example, graph traversal using Breadth First Search.

Or

- 14. Discuss the deletion and insertion operations in a binary search tree.
- 15. Discuss quick sort algorithm. Illustrate its working with the help of an example.

Or

- 16. Discuss merge sort algorithm. Illustrate its working with the help of an example.
- 17. Explain brute force, greedy and divide and conquer methods of problem solving.

Or

- 18. Explain the importance of complexity analysis in algorithm development.
- 19. Discuss in detail about the class of NP-complete problems.

Or

20. Analyse the performance of binary search, insertion sort and heap sort.

 $(5 \times 12 = 60 \text{ marks})$

