G 1085

(Pages: 3)

Reg. No.....

Name.....

B.TECH. DEGREE EXAMINATION, MAY 2016

Sixth Semester

Branch: Electronics and Communication Engineering

CONTROL SYSTEMS (L)

(Old Scheme—Prior 2010 Admissions)

[Supplementary/Mercy Chance]

Time: Three Hours

Part A

Answer all questions.

Each question carries 4 marks.

- 1. Give an example for open-loop and closed-loop control System.
- 2. Write mason's gain formula.
- 3. What is type and order of system?
- 4. What are the advantages of generalized error series?
- 5. Define: gain margin and phase margin.
- 6. What are M and N circles?
- 7. Write short note on frequency domain specifications.
- 8. What is centroid?
- 9. What is the need for compensator?
- 10. Sketch the electrical circuit of a lag-lead compensator.

 $(10 \times 4 = 40 \text{ marks})$

Part B

Answer all questions.

Each question carries 12 marks.

11. Explain open-loop and closed-loop control systems with an example.

Or

Turn over

Maximum: 100 Marks

12. Write the differential equations governing the mechanical system shown in figure.

13. Consider the open-loop transfer function of a unity feedback control system:

$$G(s) = \frac{K(s+2)}{s(s+4)(s+6)}$$

Using Routh criterion, find the range of values of K that corresponds to a stable system. Note that K is a positive real constant.

Or

- 14. For a system with, $GH(S) = \frac{5}{s+5}$, calculate the generalized error coefficients and the steady state error. Assumer (t) = 6 + 5t.
- 15. Sketch the Bode plot for the following transfer function and determine phase margin and gain margin:

$$G(s) = \frac{75(1+0.2s)}{s(s^2+16s+100)}.$$

Or

16. Sketch the Nyquist plot for a system with the open-loop transfer function

$$G(s)H(s) = \frac{K(1+0.5s)(s+1)}{(1+10s)(s-1)}$$

Determine the range of values of K for which the system is stable.

17. A feedback control system has an open-loop transfer function

$$G(s)H(s) = \frac{K}{s(s+3)(s^2+2s+2)}$$

Find the root locus as K is varied from 0 to ∞ .

Or

18. Explain the frequency domain specifications of a typical system.

19. The open-loop transfer function of a System is given by

$$G(s) = \frac{K}{s(s+1)(s+4)}$$

Design a suitable lag compensator to meet the following specifications.

Phase margin = 43°, Bandwidth = 1.02 rad/sec. Velocity error constant, $K_v \ge 5 \text{ sec}^{-1}$.

Or

20. Determine the transfer matrix for the system:

$$\begin{bmatrix} \dot{\mathbf{X}}_1 \\ \dot{\mathbf{X}}_2 \end{bmatrix} = \begin{bmatrix} -3 & 1 \\ -2 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{bmatrix} + \begin{bmatrix} 4 & 6 \\ -5 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{U}_1 \\ \mathbf{U}_2 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{Y}_1 \\ \mathbf{Y}_2 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 8 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{bmatrix}.$$

 $(5 \times 12 = 60 \text{ marks})$