B.TECH. DEGREE EXAMINATION, MAY 2016

Sixth Semester

Branch: Computer Science and Engineering
CS 010 606 L01—DISTRIBUTED SYSTEMS (Elective I) [CS]

(New Scheme—2010 Admission onwards)

[Regular/Improvement/Supplementary]

Time: Three Hours

Part A

Answer all questions.

Each question carries 3 marks.

- 1. What is the role of middleware in a distributed system?
- 2. In order to use distributed shared memory, a distributed synchronization service needs to be provided. Why?
- 3. What do you mean by "lazy replication}?
- 4. Explain Co-scheduling.
- 5. What do you mean by "dirty reads"?

 $(5 \times 3 = 15 \text{ marks})$

Maximum: 100 Marks

Part B

Answer all questions.

Each question carries 5 marks.

- 6. Explain the challenges of distributed systems with respect to the transparency of its components.
- 7. List the steps in remote procedure calls.
- 8. How is naming issue addressed in Sun Network File System?
- 9. Explain Fail-stop failures and Byznatine failures.
- 10. Explain 'lost-update problem' for concurrent transactions.

 $(5 \times 5 = 25 \text{ marks})$

Part C

Answer all questions.

Each full question carries 12 marks.

11. (a) Explain the design issues of distributed systems.

Or

Turn over

- (b) Explain workstation model of distributed system. How is an idle workstation found and how can remote process be run transparently in an idle workstation?
- 12. (a) What is marshalling? Why is it necessary for inter process communication? Explain.

Or

- (b) Explain Lamport's algorithm for clock synchronization.
- 13. (a) Explain caching in server side as well as in client side for distributed file system.

Or

- (b) Explain NFS architecture and its implementation.
- 14. (a) Explain graph theoretic deterministic algorithm for processor allocation. What are its limitations?

Or

- (b) Explain dispatcher/worker model of threads. Compare the model with pipeline model.
- 15. (a) Explain two-phase commit protocol for distributed transactions. Show the sequence of message transfer between co-ordinator and participants.

Or

(b) How will you detect deadlocks in transactions? What are the methods to resolve these deadlocks? Explain using suitable example.

 $(5 \times 12 = 60 \text{ marks})$

