~	-16	0	0	0
G	1	O	8	6

(Pages: 2)

Reg.	No

Name.....

B.TECH. DEGREE EXAMINATION, MAY 2016

Sixth Semester

Branch: Computer Science and Engineering
ALGORITHM ANALYSIS AND DESIGN (R)
(Old Scheme—Prior to 2010 Admissions)

[Supplementary/Mercy Chance]

Maximum: 100 Marks

Time: Three Hours

Part A

Answer all questions.
Each question carries 4 marks.

- 1. Define an algorithm. List the properties of an algorithm.
- 2. What is pseudo code? Write pseudo code to accept two numbers, compute their sum and print the result.
- 3. How divide-and-conquer design strategy works? Explain.
- 4. Explain how binary search works.
- 5. Why only a few optimization problems can be solved by the greedy method? Discuss.
- 6. What is a minimum cost spanning tree? Give example.
- 7. State and explain the principle of optimality.
- 8. Explain the travelling salesman problem with an example.
- 9. What is backtracking? Explain.
- 10. State and explain the N-Queens problem.

 $(10 \times 4 = 40 \text{ marks})$

Part B

Answer all questions.

Each question carries 12 marks.

11. (a) Compute the big-Oh running time of the following C code segment:

for
$$i = 1$$
; $i < n$; $i++$
{
 $sum = sum + i$;

(4 marks)

Turn over

(b) Explain with example how recurrence relations can easily describe the runtime of recualgorithms.

(8 m

Or

- 12. What is a deterministic algorithm? How deterministic algorithms work? Discuss with an exa
- 13. Discuss with an example Strassen's matrix multiplication algorithm using divide-and-condesign strategy.

Or

- 14. Explain the merge sort algorithm to sort an array of 'N' numbers in ascending order. Illust each step of the algorithm with an example.
- 15. How a fractional knapsack problem can be solved using a greedy strategy? Explain wi algorithm and example.

Or

- 16. Explain with an example Kruskal's algorithm for constructing a minimum cost spanning tr
- 17. What type of problems dynamic programming is used to solve? How dynamic programming coused to solve the all-pairs shortest path problem? Discuss with an algorithm and example.

Or

- 18. What are comparison trees? Explain with an algorithm and example the use of comparison for sorting.
- 19. How backtracking can be used for the knapsack problem? Explain with an algorithm and exa

Or

20. Discuss the least cost branch-and-bound search algorithm with example and diagram illustrations.

 $(5 \times 12 = 60 \text{ m})$

