

B.TECH. DEGREE EXAMINATION, NOVEMBER 2014

Fifth Semester

Branch: Electronics and Communication Engineering

EC 010 505 - APPLIED ELECTROMAGNETIC THEORY (EC)

(New Scheme - 2010 Admission onwards)

[Regular/Improvement/Supplementary]

Time: Three Hours

Maximum: 100 Marks

Part A

Answer all questions.

Each question carries 3 marks.

- 1. State and explain Lorentz Gauge condition in detail.
- 2. Define and explain the types of Polarization.
- 3. What are dominant and degenerate modes? Explain.
- 4. Which mode offers wide tuning range in a circular cavity resonator? Why? Explain in detail.
- 5. Derive the input impedance of a $\lambda/2$ transmission line. Assume the line is lossless.

 $(5 \times 3 = 15 \text{ marks})$

Part B

Answer all questions.

Each question carries 5 marks.

- 6. Derive the capacitance of a co-axial line. Explain the steps.
- 7. Derive Maxwell's equations in integral form.
- 8. Prove that TM_{01} does not exist in a rectangular waveguide. Justify your answer.
- 9. Define and explain the Q factor of a cavity resonator.
- 10. Explain the concept of impedance matching in Single stub tuner with a diagram.

 $(5 \times 5 = 25 \text{ marks})$

Part C

Answer all questions.

Each full question carries 12 marks.

- 11. (i) State and derive Gauss divergence theorem.
 - (ii) Derive the inductance of flat line. Explain the differences between co-axial line and two wire transmission line.

Or

- 12. (i) Derive the equation of continuity.
 - (ii) Derive the energy stored in electric field.
 - (iii) State and derive Stoke's theorem.
- 13. (i) State Poynting theorem. Derive the equation of complex vector. Explain its applications.
 - (ii) Explain the characteristics of uniform plane waves.

Or

- 14. (i) Explain the reflection and refraction of plane waves by conductor and dielectric.
 - (ii) Define and explain Skin depth. Explain its significance. Derive an expression for skin depth.
- 15. (i) Explain the characteristics of TM waves. Derive their characteristic equations.
 - (ii) Discuss the excitation of modes in rectangular waveguides with neat diagrams.

01

- 16. (i) Defie and explain: (a) Cutoff frequency; (b) Wave impedance; (c) Surface resistance; and (d) Characteristic impedance.
 - (ii) When a wave of 6 GHz propagates in parallel conducting plates separated by 3 cm, find the v_p and v_g of the wave for the dominant wave.
- 17. (i) Explain the significance of Bessel functions in circular waveguide analysis, with an example.
 - (ii) Mathematically prove that the dominant mode for circular waveguide is TE₁₁.

Or

- 18. (i) Design a rectangular cavity to have a resonant frequency of 9.8 GHz, having dimensions a = d and b = a/2.
 - (ii) The resonant frequency of a cavity is 8.8 GHz. It is critically coupled to an external circuit. The measured bandwidth with loading is 4 GHz. Calculate the loaded and unloaded Q's.
- 19. (i) Derive standard Smith chart equations. Explain the applications of Smith chart with examples.
 - (ii) Derive standard transmission line equations.

Or

- 20. (i) Define and explain: (a) Characteristic impedance; (b) Transfer impedance; (c) Propagation constant; and (d) Reflection coefficient.
 - (ii) Derive the input impedance of a lossless line. For a shorted section of 75 ohm transmission line, $1 = \lambda/4$, find the input impedance assuming $\alpha = 0$.

 $(5 \times 12 = 60 \text{ marks})$