(Pages: 3)

LIBRARY	温
Reg. No	
Name	

B.TECH. DEGREE EXAMINATION, NOVEMBER 2014

Fifth Semester

Branch: Computer Science and Engineering

OPERATING SYSTEMS (R)

(Old Scheme - Prior to 2010 Admissions)

[Supplementary/Mercy Chance]

Time: Three Hours

Maximum: 100 Marks

Part A

Answer all questions.

Each question carries 4 marks.

- 1. List five services provided by an operating system that are designed to make it more convenient for users to use the computer system.
- 2. What is the main advantage of the layered approach to system design? What are the disadvantages of using the layered approach?
- 3. Describe the differences among short-term, medium-term, and long term scheduling.
- 4. Explain the difference between pre-emptive and non-pre-emptive scheduling.
- 5. What are the three requirements that must satisfy by a solution to critical section problem?
- 6. What is a semaphore? What operations can be performed on a semaphore?
- 7. Compare logical and physical address space.
- 8. Explain the difference between external and internal fragmentation.
- 9. What are typical operations that may be performed on a directory?
- 10. Define seek time, rotational latency and bandwidth with respect to disk scheduling.

 $(10 \times 4 = 40 \text{ marks})$

Part B

Answer all questions.

Each full question carries 12 marks.

11. (a) Discuss the evolution of Operating system.

Or

(b) Explain in detail Windows 2000 architecture.

Turn over

- 12. (a) Explain the following CPU scheduling algorithm with example:
 - (i) FCFS.
 - (ii) SJF.
 - (iii) Multilevel queues.
 - (iv) Multilevel feedback queues.

Or

(b) Suppose a system uses priority scheduling (under the following processor load) where a small integer means a high priority:

Process	Burst time	Priority
0	80	3
1	20	1
2	10	4
3	20	5
4	50	2

- (i) Create a Gantt chart illustrating the execution of these processes.
- (ii) What is the turn around time for process P_2 under priority scheduling?
- (iii) What is the average wait time for the processes?
- 13. (a) Explain the following classical IPC problems:
 - (i) Producer-consumer problem.
 - (ii) Dining philosophers problem.
 - (iii) Readers writers problem

Or

- (b) (i) Explain how deadlock prevention can be done?
 - (ii) Explain how wait-for graph is used for deadlock detection?
- 14. (a) (i) What is swapping? How does swapping optimize system performance?
 - (ii) Given memory partitions of 100 K, 500 K, 300 K and 600 K (in order). How would each of the first fit, best fit, worst algorithms place processes of 212 K, 417 K, 112 K and 426 K (in order).

Or

- (b) (i) Explain the concept of demand paging.
 - (ii) Consider a logical address space of 8 pages of 1024 words each, mapped onto a physical memory of 32 frames. How many bits are there in the logical address space? How many bits are there in the physical address space?

- 15. (a) (i) Explain about different file accessing methods.
 - (ii) Explain about different directory structures.

Or

- (b) Explain about the following disk scheduling algorithms with suitable example:
 - (i) SSTF.
 - (ii) C-Scan.
 - (iii) Look.

 $(5 \times 12 = 60 \text{ marks})$