		151	LIDA	1	21
Reg.	No	131	LIBR	RY	To le
8		11/4	-	10	3/1
Nam	e		TAY	AM	

B.TECH. DEGREE EXAMINATION, MAY 2015

Fourth Semester

Branch: Mechanical Engineering/Production Engineering

ME 010 403/PE 010 403-HYDRAULIC MACHINES (ME, PE)

(New Scheme-2010 Admission onwards)

[Regular/Improvement/Supplementary]

Time: Three Hours

Maximum: 100 Marks

Part A

Answer all questions.
Each question carries 3 marks.

- 1. Differentiate between axial flow and radial flow hydraulic machines.
- 2. Define "degree of reaction".
- 3. Define forced vortex theory.
- 4. Define Euler's number and Weber's number.
- 5. Why a gear pump is known as a positive displacement pump?

 $(5 \times 3 = 15 \text{ marks})$

Part B

Answer all questions.
Each question carries 5 marks.

- 6. Derive an expression for work done in jet propulsion.
- 7. Draw the velocity triangles for a Kaplan turbine.
- 8. Write a note on shapes of impellers.
- 9. Discuss the principle of similitude.
- 10. What is the importance of indicator diagram in a reciprocating pump?

 $(5 \times 5 = 25 \text{ marks})$

Part C

Answer all questions.
Each question carries 12 marks.

- 11. The water in a jet propelled boat is drawn mid-ship and is discharged at the back with an absolute velocity of 30 m/s. The cross-sectional area of the jet at the back is 0.04 m² and the boat is moving in sea water with a speed of 30 km/hour. Determine:
 - (i) propelling force on the boat.

(4 marks)

(ii) power.

(4 marks)

(iii) efficiency of jet propulsion.

(4 marks)

Or

Turn over

12. Derive an expression for the force exerted by a jet of water on an unsymmetrical moving curved plate when jet strikes tangentially at one of the tips.

2

13. The following data is related to a pelton wheel:-

Head at the base of the nozzle = 80 m

Diameter of the jet = 100 mm

Discharge of the nozzle = $0.30 \text{ m}^3/\text{s}$

Power at the shaft = 206 kW

Power absorbed in mechanical Resistance = 4.5 kW

Determine:

- (i) power lost in nozzle; and
- (ii) power lost due to hydraulic resistance in the runner.

Or

- 14. What is a draft tube? Derive an expression for the efficiency of a draft tube.
- 15. Find the power required to drive a centrifugal pump which delivers 0.04 m^3 /s of water to a height of 20 m through a 15 cm diameter pipe and 100 m long. The overall efficiency of the pump is 70% and co-efficient of friction f = 0.15.

Or

- 16. What are the multistage centrifugal pumps? Discuss all the performance characteristics of a multistage centrifugal pump.
- 17. Explain:

(i) specific speed. (4 marks)

(ii) capacity coefficient. (4 marks)

(iii) Rayleigh's method. (4 marks)

Or

- 18. Explain the phenomenon of cavitation in (i) turbines and ; (ii) pumps. Discuss the significance of Thoma's parameter.
- 19. What is an air vessel? Explain with sketches. Derive an expression for the head lost due to friction in a reciprocating pump.

Or

20. The water is supplied at the rate of 30 litres per second from a height of 4 m to a hydraulic ram, which raises 3 litres per second to a height of 18 m from the ram. Determine D'Aubuison's and Rankine's efficiencies of the hydraulic ram.

 $[5 \times 12 = 60 \text{ marks}]$