Reg.	No
------	----

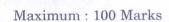
Name.....

OLLEG

LIBRARY

B.TECH. DEGREE EXAMINATION, MAY 2015

Fourth Semester


Branch: Electrical and Electronics Engineering

EE 010 403—LINEAR SYSTEM ANALYSIS (EE)

(New scheme—2010 Admission onwards)

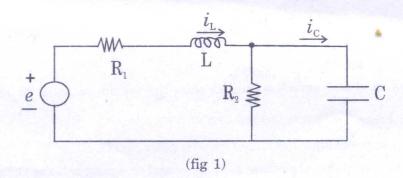
[Regular/Improvement/Supplementary]

Time: Three Hours

Part A

Answer all questions.
Each question carries 3 marks.

- 1. Define transfer function of a linear time invariant system? Also define the order of the system.
- 2. State the advantages of state variable analysis over transfer function method.
- 3. Define steady state error and list out various error constants.
- 4. Define the term BIBO stability. Briefly explain the effect of location of poles on stability.
- 5. Write down various open circuit impedance parameters.


 $(5 \times 3 = 15 \text{ marks})$

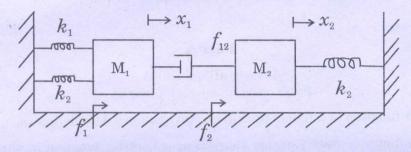
Part B

Answer all questions.

Each question carries 5 marks.

- 6. Describe the techniques of linearization of non-linear models.
- 7. Consider the circuit shown below (Fig 1).
 - (a) Identify a set of state variables.
 - (b) Draw the signal flow graph of the circuit.

Turn over


- 8. Explain in detail the various time domain specifications with diagram.
- 9. Describe the Lyapunov's Direct method for stability analysis.
- 10. Describe the procedure for obtaining residues by pole zero plot.

 $(5 \times 5 = 25 \text{ marks})$

Part C

Answer all questions.
Each question carries 12 marks.

11. Write the differential equations and hence find out the transfer function of the mechanical system shown below.

Or

- 12. Explain in detail the procedure of linearizing the non-linear models of electrical systems and linearize the following non-linear equation Z = XY in the region $5 \le X \le 7$, $10 \le Y \le 12$. Find the error if the linearized equation is used to calculate the value of Z when X = 5, Y = 10
- 13. For the system represented by the following equations, find the transfer function X(s)|U(s)| by signal flow graph technique

$$x = x_1 + \beta_3 u$$

$$x_1^0 = -a_1 x_1 + x_2 + \beta_2 u$$

$$x_2^0 = -a_2 x_1 + \beta_1 u.$$

Or

- 14. Obtain the state space representation of:
 - (a) Armature controlled DC Motor.
 - (b) Field controlled DC Motor.
- 15. Measurements conducted on a servomechanism show the system response to be

$$c\left(t\right)=1+0.2\,e^{-60t}-1.2\,e^{-10t}$$
 when subjected to a unit step input :

- (a) Obtain the expression for the closed loop transfer function.
- (b) Determine the undamped natural frequency and damping ratio of the system.

- 16. A servo mechanism is used to control the angular position ϕ_0 of a mass through a command signal ϕ_1 . The moment of inertia of load is 200 kg.m² and the motor torque at load is 6.88×10^4 N/m/rad of error. The damping torque coefficient is 5×10^3 N-m/rad/sec. Find the time response for a step input of 1 radian.
- 17. A unity feedback system has an open-loop transfer function $G(s) = K | s^2(s+2)$
 - (a) By sketching a root locus plot, show that the system is unstable for all values of K.
 - (b) Add a zero at $S = -\alpha (0 \le \alpha \le 2)$ and show that addition of zero stabilizes the system.

Or

18. Using Routh-Hurwitz criterion for the unity feedback system with open loop transfer function:

$$G(s) = \frac{k}{s(s+1)(s+2)(s+5)}$$

- (a) Find the range of k for stability.
- (b) Find the value of k for marginally stable.
- (c) Find the actual location of closed loop poles when the system is marginally stable.
- 19. Write notes on the following:
 - (a) Inverse transmission (A' B' C' D') parameters.
 - (b) Impedance converter.
 - (c) Hybrid (g) parameters.

Or

- 20. Write notes on the following:
 - (a) Gyrator.
 - (b) Ideal transformers.
 - (c) Transmission parameters (A B C D).

 $(5 \times 12 = 60 \text{ marks})$