S4 C5 (New) Central Library

G 500

(Pages: 4)

Reg. No.....

Name....

B.TECH. DEGREE EXAMINATION, MAY 2014

Fourth Semester

EN 010 401—ENGINEERING MATHEMATICS—III

(New Scheme-2010 Admission onwards)

[Regular/Improvement/Supplementary]

(Common to all Branches)

Time: Three Hours

Maximum: 100 Marks

Part A

Answer all questions.
Each question carries 3 marks.

1. If
$$f(x) = \begin{cases} kx & , & 0 \le x \le \frac{l}{2} \\ k(l-x), & \frac{l}{2} \le x \le l \end{cases}$$

find a_0 .

- 2. Show that the Fourier Cosine transform of Fourier Cosine transform of a given function is itself.
- 3. Solve: a(p+q) = z.
- 4. Find the distribution function from $f(x) = \begin{cases} c(3+2x), & 0 < x < 2 \\ 0 & \text{otherwise} \end{cases}$
- 5. What are type-I and type-II errors?

 $(5 \times 3 = 15 \text{ marks})$

Part B

Answer all questions.
Each question carries 5 marks.

- 6. Write the Fourier Series for $f(x) = \begin{cases} 1-x, & -\pi < x < 0 \\ 1+x, & 0 < x < \pi \end{cases}$.
- 7. Find the finite Fourier Cosine transform of $f(x) = \frac{\pi}{3} x + \frac{x^2}{2\pi}$.

Turn over

8. Solve:
$$\left(\frac{y^2z}{x}\right)p + xzq = y^2$$
.

9. Fit a binomial distribution for:

$$f$$
 : 5 29 36 25 5

10. Write the application of ψ^2 -test.

$$(5 \times 5 = 25 \text{ marks})$$

Part C

Answer all questions.
Each question carries 12 marks.

11. Obtain the Fourier Series for $f(x) = \begin{cases} l - x, & 0 < x \le l \\ 0, & l \le x < 2l \end{cases}$

Hence deduce that
$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$$
 and $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$.

(12 marks)

 O_{l}

12. If $f(x) = lx - x^2$ in (0, l), show that the half range, sine series for f(x) is

$$\frac{8l^2}{\pi^3} \sum_{n=0}^{\infty} \frac{1}{(2n+1)^3} \sin \frac{(2n+1)\pi x}{l} \dots \text{ and deduce that } \frac{\pi^3}{3^2} = 1 - \frac{1}{3^3} + \frac{1}{5^3} - \dots$$

(12 marks)

13. Show that the Fourier transform of $f(x) = \begin{cases} a^2 - x^2 & \text{for } |x| \le a \\ 0 & \text{for } |x| > a > 0 \end{cases}$

is
$$2.\sqrt{\frac{2}{\pi}}\left(\frac{\sin as - as \cos as}{s^3}\right)$$
. Hence deduce that $\int_0^\infty \frac{\sin t - t \cos t}{t^3} dt = \frac{\pi}{4}$. (12 marks)

Or

14. (i) Find the finite sine transform of $f(x) = x^3$.

(6 marks)

(ii) Find the cosine transform of $f(x) = \begin{cases} \cos x, & 0 < x < a \\ 0, & x > a \end{cases}$ (6 marks)

G 500

- 15. (a) Solve: $r 2s + t = \sin(2x + 3y)$.
 - (b) Solve: $\left(D^2 + D^{1^2}\right)z = \cos mx \cos ny$.

(6 marks)

(6 marks)

Or

16. (a) Solve: $D(D + D' - 1)(D + 3D' - 2)z = x^2 - 4xy + 2y^2$.

(9 marks)

(b) Solve: r - s + p = 1.

(3 marks)

17. (a) If 15% of a normal population lies below the value 30 and 10% of the population lies above the value 42, calculate its Mean and Standard Deviation.

(6 marks)

(b) Fit a Poisson Distribution to:

 $x : 0 \quad 1 \quad 2 \quad 3 \quad 4$ $f : 43 \quad 38 \quad 22 \quad 9 \quad 1$

(6 marks)

Or

- 18. (a) Six coins are tossed once. Find the probability of obtaining heads.
 - (i) exactly 3 times.
 - (ii) atmost 3 times.
 - (iii) atleast 3 times.
 - (iv) atleast once.

(8 marks)

(b) Given: X is a Poisson variate with $P(X=2)=\frac{2}{3}\,P\left(X=1\right)$. Find P(X=0) and $P(X\geq 2)$.

(4 marks)

19. (a) Test for the difference of variances for:

Method 1 : 20 16 27 26 22 23

Method 2 : 27 33 42 32 35 34 4 38

(6 marks)

(b) The 9 items of a sample have 45, 47, 50, 52, 48, 47, 49, 53, 51. Does the mean of these values differ significantly from the assumed mean 47.5?

(6 marks)

Or

20. (a) Given:

Day Mon Tue Wed Thu Fri Sat Sun f 16 8 **12** 11 6 14 14

(No. of accidents)

Is there any reason to doubt that the accident is equally likely to occur on any day of the weak?

(6 marks)

(b) A machine produced 20 defective units in a sample of 400. After overhauling the machine, it produced 10 defective units in a hatch of 300. Has the machine improved due to overhauling?

(6 marks)

 $[5 \times 12 = 60 \text{ marks}]$

