

B.TECH. DEGREE EXAMINATION, NOVEMBER 2014

Third Semester

Branch—Electrical and Electronics Engineering

ELECTRICAL AND ELECTRONIC MEASUREMENTS (E)

(Prior to 2010 Admissions—Old Scheme)

[Supplementary/Mercy Chance]

Time: Three Hours

Maximum: 100 Marks

Part A

Answer all questions briefly. Each question carries 4 marks.

- 1. Write the dimensions and SI units of:
 - (i) resistance;

- (ii) magnetic flux;
- (iii) luminous flux;
- (iv) permeability.
- 2. How magnetic materials are classified?
- 3. Explain the general principle of basic slide wire d.c. potentiometer.
- 4. Explain the working of an earth megger.
- 5. Describe the term null as it applies to bridge measurements.
- 6. Find the equivalent parallel resistance and capacitance that causes a Wien bridge to null with the following component values : R_1 = 3.1 k Ω , C_2 = 5.2 μ F, R_2 = 25 k Ω , R_4 = 100 k Ω , f = 2.5 kHz.
- 7. Explain limiting errors. How it can be minimised?
- 8. Discuss the reasons, why the errors of a current transformer are usually greater with relatively small loads than at rated full-load.
- 9. List the desirable properties of thermocouples.
- 10. State the advantages and disadvantages of bimetallic thermometers.

 $(10 \times 4 = 40 \text{ marks})$

Part B

Answer all questions.

Each full question carries 12 marks.

11. (a) Explain theory and construction of Ballistic galvanometer.

(6 marks)

Turn over

A voltmeter having a sensitivity of 1000 Ω /V reads 100 V on its 150 V scale when connected across an unknown resistor in series with a milliammeter. When the milliammeter reads 5A, calculate :

- (i) the apparent resistance of the unknown resistor;
- (ii) actual resistance of the unknown resistor; and
- (iii) error due to the loading effect of voltmeter.

(6 marks)

Or

- 12. (a) With neat diagrams, explain the theory and construction of flux meter. (6 marks)
 - (b) Explain the Lloyd-Fischer square used for the measurement of the iron losses in a specimen of laminations.

(6 marks)

13. With neat diagrams, explain the principle of operation and applications of any two types of a.c. potentiometer.

Or

- 14. The ratio arms of a Kelvin Bridge are $1000~\Omega$ each. The Galvanometer has an internal resistance of $100~\Omega$ and a current sensitivity of $500~\text{mm/}\mu\text{A}$. A d.c. current of 10A is passed through the standard arm and the unknown, from a 2.2~V battery in series with a rheostat. The standard resistance is set at $0.1000~\Omega$ and the galvanometer deflection is 30~mm. Neglecting the resistance of the yoke, determine the values of the unknown.
- 15. Describe the working of Maxwell's inductance capacitance bridge. Derive equations for balance and draw the phasor diagram under balance conditions.

01

- 16. Describe the measurement of inductance using Hay's bridge. Derive the condition and explain its phasor diagram.
- 17. With a neat phasor diagram and equivalent circuit, derive an expression for transformation ratio and phase angle of a potential transformer.

Or

18. (a) A voltage has a true value of 1.50 V. An analog indicating instrument with a scale range of 0-2.5 V shows a voltage of 1.46 V. What are the values of absolute error and correction? Express the error as a fraction of the true value and the full scale deflection.

(8 marks)

(b) Explain any four sources of possible errors in instruments.

- (4 marks)
- 19. Define luminous flux and luminous intensity. A lamp giving out 1060 lumen in all directions is suspended 6 m above the working plane. Calculate the illumination at a point on the working plain 3 m away from the foot of the lamp.

20. (a) Explain the laws of thermocouple and their applications.

(4 marks)

(b) An experiment is conducted to calibrate a copper-constants thermocouple. With cold junction at 0°, e.m.f. obtained at boiling point of water (100° C), and boiling point of sulphur (445°C) are 5 mV and 25 mV respectively. If the relation is assumed to be

$$e_{t_1\,-\,t_2}\,=\alpha\big(t_1\,-\,t_2\big)+b\,\Big(t_1^{\,2}\,-\,t_2^{\,2}\Big)\ :$$

- (i) determine the constants a and b;
- (ii) if the above thermocouple indicates 2 mV with the cold junction of 40° C. Calculate the unknown hot junction temperature.
- (iii) If the cold junction is maintained at 35° C, what would be the e.m.f. if the hot junction temperature is at 300° C?

(8 marks)

 $[5 \times 12 = 60 \text{ marks}]$

