Reg.	No

Name...

B.TECH. DEGREE EXAMINATION, NOVEMBER 2014

Third Semester

Branch: Computer Science and Engineering

LOGIC SYSTEM DESIGN (R)

(Prior to 2010 Admissions—Old Scheme)

[Supplementary/Mercy Chance]

Time: Three Hours

Maximum: 100 Marks

LIBRARY

Part A

Answer all questions briefly. Each question carries 4 marks.

- 1. Convert the following hexadecimal numbers into decimal and binary numbers :-
 - (i) ECE;

(ii) 123;

(iii) FACE;

- (iv) 9A5.
- 2. Express the following decimals in Gray code form :-
 - (i) 16;
 - (ii) 1965.
- 3. Simplify using Boolean laws:
 - (i) AB + A(B + C) + B(B + C);
 - (ii) $\overline{A} \oplus \overline{A + B}$.
- 4. Draw and explain how the basic gates can be realised using NAND gates.
- 5. List four different applications of flip-flops.
- 6. Show, with diagrams, how JK flip-flop can be converted as:
 - (i) D-flop and;
 - (ii) T-flip-flop.
- 7. Write the truth table of a full subtractor and list its applications.
- 8. What is meant by look ahead carry adder? What are its advantages?
- 9. Why are shift registers considered to be basic memory devices? Explain.
- 10. Explain 4 bit Johnson counter, mention its applications.

 $(10 \times 4 = 40 \text{ marks})$

Turn over

Part B

Answer all questions. Each full question carries 12 marks.

11. What is the most important characteristics of Gray code? Prepare a table showing the 4 bit Gray code. Explain the rule for conversion of binary numbers to Gray code and vice versa and draw logic gate circuit diagrams.

Or

- 12. (a) Convert the decimal 2013 to both BCD and ASCII codes. For ASCII, an odd parity bit is to be appended to the left.
 - (b) Find the correct code if the received code is 101101010. There are 4 parity bits and odd parity is used.
- 13. (a) Using Boolean algebra simplify:

$$F = ABC + A \overline{B} \overline{C} + A \overline{B} C + AB \overline{C}$$

(b) Using K-map simplify:

$$A \overline{B} \overline{C} + A \overline{B} D + \overline{A} B C + \overline{A} C \overline{D} + \overline{A} \overline{C} \overline{D}$$

Or

- 14. A corporation having 100 shares entitles the owner of each share to cast one vote at the shareholders meeting. Assume that A has 40 shares, B has 30 shares, C has 20 shares and D has 10 shares. A two-third majority is required to pass a resolution in a shareholders meeting. Each of these four men has a switch which he closes to vote YES and open to vote NO for his percentage of shares. When the resolution is passed the output, LED must be ON. Derive a truth table for the output function and deduce a minimal circuit for the same.
- 15. Design a mod-9 synchronous counter and draw its timing diagram.

Or

- 16. Explain SR flip-flop and JK flip-flop using NAND gates and truth tables. Explain the differences between them.
- 17. Design and draw the circuit of a 4 bit combinational circuit incrementer using four half adders and explain how it increments the member by 1.

01

- 18. Draw the circuit to show how a full adder can be converted to a full-subtractor with the inclusion of an inverter circuit.
- 19. Design a 4 bit shift register with parallel load using D flip-flops. There are two control inputs: shift and load. When shift = 1, the content of the shift register is shifted by one position. New data is transferred into the register when load = 1 and shift = 0. If both control inputs are equal to 0, the content of the register does not change:

S_1	C	Operation	of	
01	S	Operation	OI	register

- 0 0 no change
- 0 1 complement of the four inputs
- 1 0 clear register to 0 (synchronous with the clock)
- 1 load parallel data.

Draw the circuit diagram.

Or

20. Data 10101101 is fed to 8 bit SISO shift register. Show the status of the registers at various clock pulses. Explain with the help of circuit diagram.

 $(5 \times 12 = 60 \text{ marks})$