Course code	Course name	L-T-P- Credits	Year of Introduction
AE361	VIRTUAL INSTRUMENT DESIGN	3-0-0-3	2016

Prerequisite: Nil

Course objectives

- To review background information required for studying virtual instrumentation.
- To study the basic building blocks of virtual instrumentation.
- To study the various graphical programming environment in virtual instrumentation.
- To study few applications in virtual instrumentation.

Syllabus

Review of digital instrumentation - Fundamentals of virtual instrumentation - VI programming techniques - Data acquisition - VI Chassis requirements - Graphical programming environment - Analysis tools and simple applications

Expected outcome

• The students will gain knowledge in virtual instrumentation and some of its applications.

Text Books

- 1. Peter W. Gofton, 'Understanding Serial Communications', Sybex International.
- 2. Robert H. Bishop, 'Learning with Lab-view', Prentice Hall, 2003.
- 3. S. Gupta and J.P Gupta, 'PC Interfacing for Data Acquisition and Process Control', Instrument society of America, 1994.

Reference Books

- 1. Gary W. Johnson, Richard Jennings, 'Lab-view Graphical Programming', McGraw Hill Professional Publishing, 2006.
- 2. Kevin James, 'PC Interfacing and Data Acquisition: Techniques for Measurement, Instrumentation and Control', Newness, 2000.

Course Plan

WEB RESOURCES:

www.ni.com

			Semester
Module	Contents	Hours	Exam
	T-4-1		Marks
	ESIO.	6	15%
I	Review of digital instrumentation: - Representation of analog	7	
	signals in the digital domain - Review of quantization in		
	amplitude and time axes, sample and hold, sampling theorem,		
	ADC and DAC.		
	2014		
	Virtual Instrumentation: Historical perspective - advantages -	7	15%
II	block diagram and architecture of a virtual instrument -		
	Conventional Instruments versus Traditional Instruments -		
	data-flow techniques, graphical programming in data flow,		
	comparison with conventional programming.		
	FIRST INTERNAL EXAMINATION		
	VI programming techniques: VIs and sub-VIs, loops and	7	15%
III	charts, arrays, clusters and graphs, case and sequence		
	structures, formula nodes, local and global variables, State		

machine, string and file I/O, Instrument Drivers, Publishing

measurement data in the web.

IV	Data acquisition basics: Introduction to data acquisition on PC, Sampling fundamentals, Input/Output techniques and buses. ADC, DAC, Digital I/O, counters and timers, DMA, Software and hardware installation, Calibration, Resolution, Data acquisition interface requirements.	6	15%
	SECOND INTERNAL EXAMINATION		
V	VI Chassis requirements. Common Instrument Interfaces: Current loop, RS 232C/ RS485, GPIB. Bus Interfaces: USB, PCMCIA, VXI, SCSI, PCI, PXI, Firewire. PXI system controllers, Ethernet control of PXI. Networking basics for office & Industrial applications, VISA and IVI.	8	20%
VI	VI toolsets, Distributed I/O modules. Application of Virtual Instrumentation: Instrument Control, Development of process database management system, Simulation of systems using VI, Development of Control system, Industrial Communication, Image acquisition and processing, Motion control.	8	20%
	END SEMESTER EXAMINATION		

QUESTION PAPER PATTERN:

Maximum Marks: 100 Exam Duration: 3 Hours

Part A

Answer any two out of three questions uniformly covering Modules 1 and 2 together. Each question carries 15 marks and may have not more than four sub divisions.

 $(15 \times 2 = 30 \text{ marks})$

Part B

Answer any two out of three questions uniformly covering Modules 3 and 4 together. Each question carries 15 marks and may have not more than four sub divisions.

 $(15 \times 2 = 30 \text{ marks})$

Part C

Answer any two out of three questions uniformly covering Modules 5 and 6 together. Each question carries 15 marks and may have not more than four sub divisions.

 $(20 \times 2 = 40 \text{ marks})$