B.TECH. DEGREE EXAMINATION, MAY 2015

Eighth Semester

Branch: Civil Engineering

CE 010 805 G05—NUMERICAL METHODS (Elective IV) (CE)

(New Scheme—2010 Admission onwards)

[Regular/Supplementary]

Time: Three Hours

Maximum: 100 Marks

Part A

Answer all questions.
Each question carries 3 marks.

- 1. What is Cholesky method?
- 2. Determine the largest eigen value and corresponding eigen vector of the matrix $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$.
- 3. What is Gauss quadrature formula?
- 4. What are the finite difference techniques?
- 5. Define statistical computations.

 $(5 \times 3 = 15 \text{ marks})$

Part B

Answer all questions.
Each question carries 5 marks.

- 6. Write short notes on storage schemes.
- 7. Find the dominant eigen value and corresponding eigen vector of the matrix $A = \begin{pmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$.
- 8. State and prove Simpson 3/8 rule.
- 9. Using Newton's method to find the real root of $3x \cos x 1 = 0$.
- 10. Find a solution to $\begin{bmatrix} -1 & 2 \\ 2 & -3 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}.$

 $(5 \times 5 = 25 \text{ marks})$

Turn over

11. For
$$A = \begin{cases} 16 & 4 & 4 & -4 \\ 4 & 10 & 4 & 2 \\ 4 & 4 & 6 & -2 \\ -4 & 2 & -2 & 4 \end{cases}$$
 and $B = \begin{cases} 32 \\ 26 \\ 20 \\ -6 \end{cases}$ and construct Cholesky method to solve $Ax = B$.

- 12. Apply Gauss-Jordon method to find the solution of the system 10x + y + z = 12, 2x + 10y + z = 13, x + y + 5z = 7.
- 13. Find the largest eigen value and eigen vector of the matrix by power method $\begin{bmatrix} 1 & 2 & 3 \\ 0 & -4 & 2 \\ 0 & 0 & 7 \end{bmatrix}$.

Or

- 14. Solve by Jacobi's iteration method correct to two decimal places 10x + y - z = 11.19, x + 10y + z = 28.08, -x + y + 10z = 35.61.
- 15. Compute f(0.3) for the data using Lagrange's interpolation formula (Analytic value is 1.831)

x	0	1	3	4	7
f	1	3	49	129	813

Or

- 16. Numerically approximate the integral $\int_0^2 (2 + \cos(2\sqrt{x})) dx$ by using the Trapezoidal rule with m = 50, 100, 200, 400 and 800 subintervals.
- 17. Consider the function $f(x) = \cos x x = 0$. Approximate a root of f using Newton's method.

Solve the differential equation by Galerkin method $d^2 u/dx^2 + 1 = 0, 0 \le X \le 1$.

$$u(0) = 0,$$

 $du/dx(1) = 1$ boundary condition.

19. Find the Simple/Linear Regression of:

X	60	61	62	63	65	
Y	3.1	3.6	3.8	4	4.1	
				0-		

20. Explain in detail about method of least square curve fitting procedures.

 $(5 \times 12 = 60 \text{ marks})$