Reg. No....

Name.....

B.TECH. DEGREE EXAMINATION, MAY 2014

Eighth Semester

Branch: Civil Engineering

CE 010 805 G05 - NUMERICAL METHODS (Elective IV) [CE]

(New Scheme-2010 Admissions)

[Regular]

Time: Three Hours

Maximum: 100 Marks

Part A

Answer all questions.

Each question carries 3 marks.

- 1. Explain Cholesky method.
- 2. Briefly describe Jacobi's method.
- 3. Explain isoparametric style of interpolation.
- 4. Describe weighted residual method.
- 5. Explain the method of least squares.

 $(5 \times 3 = 15 \text{ marks})$

Part B

Answer all questions.

Each question carries 5 marks.

- 6. Explain Gaussian elimination.
- 7. What is meant by Eigenvalue problem? Explain eigenvalues and eigenvectors.
- 8. Explain trapezoidal rule and Gaussian quadrature formula.
- 9. Explain finite difference method.
- 10. What do you mean by frequency chart?

 $(5 \times 5 = 25 \text{ marks})$

Part C

Answer all questions.

Each full question carries 12 marks.

11. Use Gauss elimination method to solve 10x - 7y + 3z + 5u = 6, -6x + 8y - z - 4u = 5, 3x + y + 4z + 11u = 2 and 5x - 9y - 2z + 4u = 7.

Or

Turn over

- 12. Discuss the advantages of submatrix equation solver.
- 13. Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$.

Or

14. Using Jacobi's method, find the eigenvalues and eigen vectors of the matrix:

$$\begin{bmatrix} 1 & \sqrt{2} & 2 \\ \sqrt{2} & 3 & \sqrt{2} \\ 2 & \sqrt{2} & 1 \end{bmatrix}$$

15. Evaluate $\int_0^6 \frac{dx}{1+x^2}$ by using (i) Trapezoidal rule and (ii) Simpson's $\frac{3}{8}$ rule.

 O_r

- 16. Use Simpson's $\frac{1}{3}$ rd rule to find $\int_{0}^{0.6} e^{-x^2} dx$ by taking seven ordinates.
- 17. Find Newton's forward difference interpolating polynomial for the following data:

x	0.1	0.2	0.3	0.4	0.5	
y = f(x)	1.4	1.56	1.76	2	2.28	

Or

18. Obtain a cubic backward interpolation polynomial for the table of points given. Find the value of y at x = 2.2:

X	1	2	3	4	5	6	7	8
Y	2.105	2.808	3.614	4.604	5.857	7.451	9.467	11.958

19. Obtain the Coefficient of correlation from the following data:

	x	104	111	104	114	118	117	105	108	106	100	104	105
L	у	57	55	47	45	45	50	64	63	66	62	62	61

Or

20. The voltage v across a capacitor at rime t seconds is given by the following table. Use the method of least squares to fit a curve of the form $v = ae^{kt}$ to this data:

t	0	2	4	6	8
υ	150	63	28	12	5.6

 $(5 \times 12 = 60 \text{ marks})$