| Reg. | No | <br>****** | ••••• | ••••• | •••• |
|------|----|------------|-------|-------|------|
|      |    |            |       |       |      |
| Nam  | e  |            |       |       |      |

# **B.TECH. DEGREE EXAMINATION, MAY 2016**

## Eighth Semester

Branch: Civil Engineering

CE 010 804 L05—HIGHWAY AND AIR FIELD PAVEMENTS (Elective III) [CE]

(New Scheme-2010 Admission onwards)

[Regular/Supplementary]

Time: Three Hours

## Maximum: 100 Marks

### Part A

Answer all questions. Each question carries 3 marks.

- 1. Differentiate between flexible and rigid pavements.
- 2. What is group index?
- 3. How are the design charts for rigid pavements developed?
- 4. Explain expansion and contraction joints.
- 5. Why do we need pavement maintenance?



 $(5 \times 3 = 15 \text{ marks})$ 

#### Part B

Answer all questions. Each question carries 5 marks.

- 6. Using a suitable diagram, explain the concept of equivalent single wheel load.
- 7. Explain Mc Leod method of pavement design.
- 8. What do you mean by equivalent radius of resisting section?
- 9. Explain Bradbury's analysis for load transfer capacity of a single dowel bar.
- 10. Which factors contribute to roughness and skid in pavements?

 $(5 \times 5 = 25 \text{ marks})$ 

### Part C

Answer all questions. Each full question carries 12 marks.

11. Explain the mechanism of load transfer in flexible and rigid pavements with the help of suitable diagrams.

Or

Turn over



- 12. Which are the main design factors considered in pavement design? Describe about them.
- 13. The CBR value of a subgrade soil is 4 %, calculate total thickness of a pavement using:
  - (i) Design curve developed by California State Highway Department. (3 marks)
  - (ii) Design chart-recommended by IRC.

(3·marks)

(iii) Design formula developed by the US corps of Engineers.

(3 marks)

(iv) Using IRC design chart, when compacted sandy soil with 7 percent CBR is available.

(3 marks)

Assume 4100 kg. wheel load, ADT of commercial vehicles as 1200 and tyre pressure 7 kg./cm.<sup>2</sup>

Or

- 14. Explain Burmister's layer theory.
- 15. Calculate stress at interior, edge and corner of a CC pavement by Westergaard's equation. Wheel load = 5200 kg., E of concrete 3 × 10<sup>5</sup> kg./cm.<sup>2</sup>, Thickness of pavement 20 cm., Poisson's ratio of concrete 0.15, Modulus of subgrade reaction 5 kg./cm.<sup>3</sup> Radius of contact area 15 cm.

Or

- 16. What are wheel load stresses? Explain evaluation of wheel load stresses for design.
- 17. Design the length and spacing of the bars for a CC pavement of 18 cm. thickness, has two lanes of 7.1 m. with a joint. W = 2400 kg./cm.<sup>2</sup>,  $S_a = 1750$  kg./cm.<sup>2</sup>, coefficient of friction is 15 and  $S_b = 24.6$  kg./cm.<sup>2</sup>

Or

- 18. Design the spacing between construction and expansion joints, when expansion joint gap is 2 cm. laying temperature is 15° C., maximum slab temperature is 50° C., slab thickness 20 cm., f = 1.5 and PCC with  $S_c = 0.8$  kg/cm.<sup>2</sup>
- 19. What are the common types of pavement distresses?

Or

20. What are overlays? Differentiate between different types of overlays. Discuss the design of overlays.

 $(5 \times 12 = 60 \text{ marks})$ 

