\boldsymbol{C}	1	Q	4	A
u	ı,	J	'X '	¥

(Pages: 2)

Reg.	No

Name.....

B.TECH. DEGREE EXAMINATION, MAY 2016

Seventh Semester

Branch: Civil Engineering

CE 010 705—TRANSPORTATION ENGINEERING—II

Time: Three Hours

Maximum: 100 Marks

Assume suitable data wherever necessary.

Part A

Answer all questions.

Each question carries 3 marks.

- 1. Draw the typical cross section of rural arear.
- 2. Explain Transition curves.
- 3. List traffic control device.
- 4. Explain flexible pavements.
- 5. Explain Clearway.

 $(5 \times 3 = 15 \text{ marks})$

Part B

Answer all questions.
Each question carries 5 marks.

- 6. Write a note on:
 - (i) Median;
 - (ii) Kerbs.
- 7. Briefly explain vertical curves.
- 8. Explain the disadvantages of traffic signals.
- 9. List the test conducted on bituminous material.
- 10. Write a note on aircraft parking system.

 $(5 \times 5 = 25 \text{ marks})$

Part C

Answer all questions.

Each full question carries 12 marks.

11. Explain requirement and factors controlling alignment of roads.

Or

Turn over

- 12. (i) A vehicle is travelling at an average speed of 100 km/h under the following conditions:—
 - (a) Level Surface;
 - (b) Upward gradient of 1.98%;
 - (c) Downward gradient of 2%.

Assume perception and break reaction time = 2.5 sec and coefficient of longitudinal friction between vehicle tires and road surface = 0.35. Determine safe stopping sight distance.

(6 marks)

(ii) Explain road margin and right of way.

(6 marks)

13. (i) A vertical curve is formed when an ascending gradient of 1 in 30 meets a descending gradient of 1 in 40. The curve is to be designed to provide OSD for a design speed of 80 km/h. calculate the suitable length of the summit curve. Assume suitable data.

(6 marks)

- (ii) A national highway is passing through plain rolling and hilly areas. According to IRC guidelines design super elevation for the given condition.
 - (a) For Plain Terrain:

Ruling Design Speed: 80 kmph and horizontal curve radius: 215 m.

Ruling Design Speed: 100 kmph and horizontal curve radius: 137 m.

Or

- 14. Calculate the length of transition curve and shift to be provided in a built up area using the following data. Design speed 80 kmph, radius 240 m, pavement rotated about centerline, pavement width 7.5 m.
- 15. Explain the classification of road sign.

Or

- 16. Explain types of road intersection.
- 17. Explain the construction procedure for bituminous surface dressing.

Or

18. (i) Explain the types and causes of failure in rigid pavement.

(6 marks)

(ii) Write a short note on highway drainage.

(6 marks)

19. (i) How is the runway orientation decided?

(6 marks)

(ii) Write a note on airport lighting.

(6 marks)

Or

20. (i) Write a note on navigational aids and landing aids.

(6 marks)

(ii) Write a note on obstruction and zoning law.

(6 marks)

 $[5 \times 12 = 60 \text{ marks}]$