G 1550

(Pages: 2)

Reg. No.....

Name.....

B.TECH. DEGREE EXAMINATION, MAY 2015

Fourth Semester

Branch: Civil Engineering

CE 010 405—SURVEYING—II (CE)

(New Scheme—2010 Admission onwards)

[Regular/Improvement/Supplementary]

Time: Three Hours

Maximum: 100 Marks

Part A

Answer all questions.
Each question carries 3 marks.

- 1. Explain phase of signals.
- 2. What do you mean by base net?
- 3. List the different methods of locating soundings.
- 4. What is the principle of total station?
- 5. What do you mean by Astronomical triangle?

 $(5 \times 3 = 15 \text{ marks})$

Part B

Answer all questions.
Each question carries 5 marks.

- 6. What do you mean by strength of figure?
- 7. Explain method of correlates.
- 8. Differentiate between microwave and visible light instruments.
- 9. Explain the concept of remote sensing.
- 10. Define and explain celestial sphere.

 $(5 \times 5 = 25 \text{ marks})$

Part C

Answer all questions.
Each full question carries 12 marks.

11. Explain eccentricity of a signal. How would you correct the observations made upon an eccentric signal?

Or

12. How could you determine the intervisibitily of triangulation stations? Give in a tabular form the classification of triangulation based upon accuracy.

Turn over

LIBRARY

13. Determine the most probable values of the angles of a triangle ABC, where

$$\angle A = 62^{\circ} 14' 12''$$
, Weight = 1

$$\angle B = 48^{\circ} 12' 14''$$
, Weight = 3

$$\angle C = 69^{\circ} 33' 28''$$
, Weight = 2

Or

$$\alpha = 38^{\circ}12' \ 26.5'' \ \text{Weight} = 1$$

$$\beta = 32^{\circ} 45' 13.2''$$
, Weight = 2

$$\alpha + \beta = 70^{\circ} 57' 38.6''$$
, Weight = 2

$$\alpha + \beta + \gamma = 126^{\circ} 28' 0.6''$$
, Weight = 3

$$\beta + \gamma = 88^{\circ} 15' 37.8''$$
, Weight = 1

15. Describe the various methods of plotting the soundings.

Or

- 16. Discuss the principle of electromagnetic distance measurement. Explain how EDM lines are reduced.
- 17. (a) Explain how do you determine the focal length of the Camera lens of a photo-theodolite.

(5 marks)

(b) The distance from two points on a photographic print to the principal line are 42.36 mm to the left and 38.16 mm to the right. The angle between the points measured with a transit is 30° 45′. Determine the focal length of lens.

(7 marks)

Or

- 18. The scale of an aerial photograph is 1 cm = 160 m and the size of the photograph is $20 \text{ cm} \times 20 \text{ cm}$. If the longitudinal lap is 65% and side lap = 35%, determine the number of photographs required to cover an area of 232 km^2 .
- 19. Determine the azimuth and altitude of a star with the following data:-

Latitude of observer

 $= 48^{\circ} \text{ N}$

Hour angle of star

 $= 43^{\circ}$

Declination of star

 $= 18^{\circ} 20' \text{ N}$

Or

20. Write notes on:

- (i) Spherical triangle.
- (ii) Zenith and Nadis.

(iii) Declination.

(iv) Right ascension.

 $(5 \times 12 = 60 \text{ marks})$