Register No.: ..

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

Name:

811A4

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

THIRD SEMESTER B.TECH DEGREE EXAMINATION (R,S), DECEMBER 2023 ELECTRONICS AND COMMUNICATION ENGINEERING

(2020 SCHEME)

Course Code : 20ECT201

Course Name: Solid State Devices

Max. Marks : 100

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Explain the concept of fermions and fermi level.
- 2. Distinguish between elemental and compound semiconductors with examples.
- 3. Describe the significance of continuity equation and write the expression of continuity equation of holes.
- 4. Explain the effect of temperature on doping.
- 5. Sketch the potential, charge density and electric field distribution within the transition region of an abrupt pn junction with $N_D < N_A$.
- 6. Sketch the energy band diagram of a p-n junction at i) equilibrium ii) under forward biased.
- 7. Explain body effect in MOSFET.
- 8. Sketch the drain and transfer characteristics of n-channel MOSFET.
- 9. Explain the subthreshold characteristics of an n-channel MOSFET.
- 10. Explain the operation of FINFET.

PART B

(Answer one full question from each module, each question carries 14 marks) MODULE I

- 11. a) Derive the expressions for charge concentrations of semiconductor doped with both pentavalent and trivalent impurities. (8)
 - b) Calculate the hole and intrinsic carrier concentration of a semiconductor with given parameters. $N_{C} = 10^{19} \text{ cm}^{-3}$, $N_{V} = 5 \times 10^{18} \text{ cm}^{-3}$, $E_{g} = 2 \text{eV}$, T = 900 K, $n_{0} = 10^{17} \text{ cm}^{-3}$. (6) Also sketch the band diagram.

OR

- 12. a) A semiconductor is doped with 2x10¹⁶cm⁻³ Boron atoms and 1x10¹⁶cm⁻³ of Phosphorus atoms at 300 K. Calculate
 i) The type of the sample,
 - ii) Electron and Hole concentrations,
 - iii) The fermi level position with respect to intrinsic energy level,

Duration: 3 Hours

(8)

(6)

iv) Also, plot the energy band diagram (n_i= $1.5 x 10^{10} cm^{\text{-}3}$ for Silicon at 300 K).

b) Explain indirect recombination through traps.

MODULE II

- 13. a) Derive the expression for diffusion current density in a semiconductor (10)
 - b) Electron mobility and life time in a semiconductor at room temperature are $0.36 \text{ m}^2/\text{V}$ -s and $340 \text{ }\mu\text{s}$ respectively. Compute the (4) electron diffusion length.

OR

- 14. a) Define Hall Effect. Also, derive the expressions for majority carrier concentration and mobility in terms of Hall voltage. (8)
 - b) A potential of 100mV is applied across a semiconductor bar and the resulting current is 1mA. A magnetic field of 10^{-4} Wb/cm² is applied perpendicular to this semiconductor bar. The hall voltage measured is -2 mV. The dimensions of the bar are, width = 0.1mm, (6) length= 5 mm and thickness = 10 μ m. Determine
 - i) the type of the semiconductor bar,
 - ii) the concentration and the mobility of majority carriers.

MODULE III

- 15. a) Derive the expression for current flow through a p-n junction. Describe the reverse bias currents. (8)
 - b) Explain base width modulation and describe its effect in input and output characteristics of a BJT. (6)

OR

- 16. a) List out the assumptions and derive the terminal current equations (10) of a transistor.
 - b) Sketch the energy band diagram of a metal n-type semiconductor with $\phi_m > \phi_s$ when it is i) under equilibrium and ii) when it is (4) biased.

MODULE IV

- 17. a) Derive the expression for drain current of MOSFET in the saturation and linear region. (8)
 - b) A silicon n channel MOSFET has μn=600cm²/V s, Cox=1.2×10⁻⁷ F/cm², W=50μm, L=10μm and V_{th}=0.8V. Find the drain current when

 (i) V_{GS}=2V and V_{DS}=1V
 (ii) V_{GS}=3V and V_{DS}=5V

OR

18. a) Explain with diagrams the working and characteristics of nchannel enhancement MOSFET (5)

811A4

Explain the energy band diagrams of an ideal MOS capacitor under b) i) equilibrium ii) depletion iii) inversion and iv) strong inversion (9) conditions.

MODULE V

19.	a)	Explain	the	concept	of	Drain	Induced	Barrier	Lowering	in	(8)
		MOSFET	s and	d its effect	on	the thr	eshold vol	tage of a	MOSFET.		(0)

Explain velocity saturation and hot carrier effects. (6) b)

OR

20.	a)	Explain the need for scaling in MOSFET. Describe about constant		
		voltage scaling and constant field scaling.		
	b)	Explain short channel effect in MOSFET.	(5)	

Explain short channel effect in MOSFET. b)