Register No.:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

Name:

886A4

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

THIRD SEMESTER B.TECH DEGREE EXAMINATION (R,S), DECEMBER 2023 COMPUTER SCIENCE AND ENGINEERING

(2020 SCHEME)

- Course Code : 20CST203
- Course Name: Logic System Design

Max. Marks : 100

PART A

(Answer all questions. Each question carries 3 marks)

1. Perform the following base conversions a) $(A26E)_{16}$ to octal

b) $(10110110110)_2$ to octal

- 2. Subtract 13 from 24 using 2's complement representation and 1's complement representation.
- 3. Simplify the expression: i) AB + ABC + ABC + BC

ii) AB + A(B + C) + B(B + D)

- 4. Design a circuit using NAND gates for implementing EXCLUSIVE-OR function
- 5. Construct a 4X 16 decoder with two 3 X 8 decoders.
- 6. Design and implement a half subtractor.
- 7. Compare a T flip-flop with a D flip-flop.
- 8. Explain race around problem. How can it be eliminated?
- 9. Distinguish between a ring counter and Johnson counter.
- 10. What is programmable logic array? Where is it useful?

PART B

(Answer one full question from each module, each question carries 14 marks)

MODULE I

- 11. a) Perform the following operations i) $(B242)_{HEX} + (2CD6)_{HEX}$ ii) Add octal numbers 1257 and 7254 iii) BCD addition of 01110110 + 00110101 (9)
 - b) Find the 12 bit 2's complement representation of the following decimal numbers. (i) 46 (ii) 136 (iii) 210 (5)

OR

- 12. a) Perform the following base conversions: (i) $(110110.110)_2$ to octal (ii) $(425.2)_8$ to binary (iii) $(324.3)_5$ to binary (iii) (9)
 - b) Subtract 145 from 726 assuming the numbers are i) octal
 ii) hexadecimal

Duration: 3 Hours

886A4

MODULE II

13.	a)	Show	that	any	digital	circuit	can	be	implemented	using	any	(6)
		univers	sal ga	te								(0)

b) Simplify the Boolean function F(a,b,c,d) : (0,1,2,4,6,8,9,10,12,14,15) using K map (8)

OR

- 14. a) Express the following functions in a canonical form i) F= D+BC' ii)
 F: AB' +BC'
 - b) Simplify the Boolean function F(a,b,c,d) : (0,2,5,6,7,8,9,10,12,13,15) using tabulation method (8)

MODULE III

15.	a)	Design a code converter for converting a BCD to excess-3 code.	(8)
	b)	Design a 2 bit magnitude comparator.	(6)

OR

16.	a)	Design a parallel adder/subtractor circuit with a logic diagram.				
	b)	Design a 4x2 encoder circuit	(6)			

MODULE IV

17.	a)	Write	the	characteristics	equation,	excitation	table	of JK	and I	D	(4)
		flipflop	•								(+)

b) Design and implement a 4 bit binary synchronous down counter. (10)

OR

18.	a)	Explain asynchronous BCD counter.	(4)
	b)	Explain i) SR flip-flop ii) JK flip-flop iii) master-slave flip-flop with	(10)
		excitation table and characteristic equation	(10)

MODULE V

19.	a)	With a neat diagram explain universal shift register.	(7)
	b)	Write algorithm for floating point addition and subtraction.	(7)

OR

- 20. a) Explain the working of a 3 stage Johnson ring counter with a block (7) diagram.
 - b) Write algorithm for addition and subtraction of two binary numbers (7) in sign magnitude form.