Name:

Register No.:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

THIRD SEMESTER B.TECH DEGREE EXAMINATION (R,S), DECEMBER 2023 ROBOTICS AND AUTOMATION

(2020 SCHEME)

Course Code : 20RBT203

Course Name: Electronic Devices and Circuits

.....

Max. Marks : 100

Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

1. For the circuit shown below, Give the diode condition (On/OFF) for the following cases

(a). $V_{B2} < V_i < V_{B1}$ (b). $V_i > +V_{B1}$ (c). $V_i < -V_{B2}$

- 2. Compare DC and AC load lines with suitable graph.
- 3. Sketch the transfer characteristics along with drain characteristics of JFET.
- 4. Derive the relation between g_m and g_{mo} .
- 5. Sketch the circuit diagram of transformer coupled amplifier and briefly explain.
- 6. Derive the conversion efficiency of a class B power amplifier.
- 7. State and explain Barkhausen's Criteria.
- 8. List the characteristics of an ideal op-amp.
- 9. Define CMRR and explain.
- 10. Infer the effect of slew rate on waveform generation in op-amp.

PART B

(Answer one full question from each module, each question carries 14 marks)

MODULE I

- 11. a) Design a Zener diode voltage regulator for a load current of 50mA and output voltage of 5V. (7)
 - b) Explain the hybrid model for CE configuration and write its h parameter equations. (7)

OR

С

(7)

12. a) For the voltage divider configuration shown below having β =140, Vcc=22V, Rc=10K Ω , R_E=1.5k Ω , R₁=39k Ω , R₂=3.9k Ω , calculate V_{CE} and Ic.

b) Illustrate the working of negative clamping circuit with suitable (7) diagrams.

MODULE II

- 13. a) Explain the construction and working of N-channel Depletion (7) MOSFET with necessary illustration.
 - b) Analyze CS amplifier-voltage divider bias circuit using small signal (7) model.

OR

- 14. a) Draw and explain the drain characteristics of N-channel JFET. (7)
 - b) Perform high frequency analysis of common emitter BJT amplifier with its necessary circuit diagrams. (7)

MODULE III

- 15. a) Sketch and explain the working of a two stage RC coupled amplifier. (8) Mention its advantages and disadvantages.
 - b) Classify the topologies of feedback amplifiers with its block diagram (6) and compare their input and output impedances.

OR

- 16. a) With the necessary block diagram, derive the overall gain of an amplifier for positive and negative feedback. (8)
 - b) Explain the operation of class B power amplifier with its circuit diagram. (6)

MODULE IV

- 17. a) Explain the working of Colpitt's oscillator. (8)
 - b) Explain the working of summing amplifier using op-amp. (6)

OR

- 18. a) With a neat circuit diagram, explain the operation of BJT based RC Phase shift oscillator and derive its frequency of oscillation. (8)
 - b) Explain the working of inverting amplifier using operational (6) amplifier. Derive the expression for its voltage gain.

С

Page 2 of 3

536A4

MODULE V

- 19. a) Explain the operation of an instrumentation amplifier using op-amp. (7)
 - b) Illustrate the operation of a Monostable multivibrator using 555 Timer IC. (7)

OR

- 20. a) With a suitable circuit, explain the operation of converting sine wave (7) into square wave.
 - b) Draw the functional block diagram of IC565 and explain its operation. (7)
