Register No.:

D

Name:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

THIRD SEMESTER B.TECH DEGREE EXAMINATION (R,S), DECEMBER 2023 ELECTRICAL AND ELECTRONICS ENGINEERING

.

(2020 SCHEME)

Course Code : 20EET205

Course Name: Analog Electronics

.....

Max. Marks : 100

Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Define Operating point of BJT. List the factors affecting stability of operating point.
- 2. Draw the h parameter model of BJT in CE configuration. What are the advantages of hybrid parameters of transistors?
- 3. Compare JFET and MOSFET.
- 4. Define Enhancement Type MOSFET. Show the Characteristics curve of P Channel Enhancement MOSFET.
- 5. In a negative feedback amplifier, A= 100, β = 0.04 and V_s = 50 mV, find a) Gain with feedback
 - b) Output voltage
- 6. Summarize the applications of Direct Coupled Amplifiers.
- 7. Distinguish between Ideal and practical Operational amplifier.
- 8. Illustrate the virtual short-circuit (virtual ground) concept of an op-amp.
- 9. Identify the drawback of zero crossing detector. Explain how it was overcome by the regenerative comparator.
- 10. Outline the effect of slew rate of Op-amp on waveform generation.

PART B

(Answer one full question from each module, each question carries 14 marks) MODULE I

- 11. a) Derive the stability factor S for voltage divider bias with neat (7) sketch
 - b) For the circuit shown in Figure 1 V_{cc} =20V, R_c =2 k Ω , β =50, (7) V_{BE} =0.7V, R_1 =100 k Ω , R_2 =10 k Ω and R_E =100 Ω . Determine I_B, V_{CE} , I_C and Stability factor S.

Figure 1

OR

- 12. a) Illustrate the small signal low frequency AC equivalent circuit of CE amplifier. (8)
 - b) For the CE amplifier shown in Figure. Determine the Ri, A_v and $R_o.$ The Transistor parameters are $\beta{=}100,\,V_{\rm BE}{=}0.7$ V

Figure 2

118B2

(7)

MODULE II

13. a) Explain JFET Common drain Amplifier with neat sketch

b) A JFET amplifier with a voltage divider biasing circuit, shown in Figure 3 has the following parameters: V_p =-2V, I_{DSS} =4mA, R_D =910 Ω , R_s =3k Ω , R_1 =12M Ω , R_2 = 8.75M Ω and V_{DD} = 24V. Determine the value of the drain current I_D at the operating point.

OR

- 14. a) Analyze the effect of various internal capacitances on high frequency response of BJT. (7)
 - b) Illustrate the Small Signal Hybrid π equivalent circuit of BJT. (7)

MODULE III

Explain the class B push pull power amplifier and its operation, cross over distortion with neat sketch and prove that its conversion efficiency (14) is 78.5%. Analyze how will you eliminate cross over distortion?

OR

- 16. a) Explain the working of Hartley oscillator. Also derive the expression for frequency of oscillation. (8)
 - b) In a Hartley oscillator, L₁=15mH and c=50pF. Determine L₂ for a frequency of 168kHz. The Mutual inductance between L₁ And L₂ is 5 μH. Also find the required gain of the transistor to be used for oscillations.

MODULE IV

- 17. a) Draw and Explain the modes of operation of a fundamental differential amplifier. (7)
 - b) Determine the CMRR and express it in decibel for the circuit (7)

measurements shown in Figure 4.

- 18. a) Draw and explain the instrumentation amplifier. (10)
 - b) For a noninverting amplifier shown in Figure 5, Determine a) A_{CL} b) V_0 c) I_L D) $I_{0.}$

Figure 5

MODULE V

- 19. a) Examine how zero crossing detector used as a comparator. (7)
 - b) Outline the working of an ideal differentiator and practical differentiator using op-amp with corresponding input and output (7) waveform.

OR

20. a) Illustrate the working of triangle wave generator using op-amp (7)

118B2

with corresponding input and output waveform.

b) Analyze how Astable multivibrator called as a free running multivibrators? Explain it using timer 555 IC with neat sketch. (7)

D