Name:

Register No.:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

FIFTH SEMESTER B.TECH DEGREE EXAMINATION (R,S), DECEMBER 2023 ROBOTICS AND AUTOMATION

(2020 SCHEME)

Course Code: 20RBT301

Course Name: Introduction to Robotics

Max. Marks: 100

Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

- 1. List the features of SCARA robot.
- 2. Differentiate between active and passive grippers.
- 3. Define the pose of a rigid body.
- 4. Determine the rotation matrix, if frame {2} is rotated with respect to frame {1} by 60° about the Z-axis.
- 5. Differentiate between Joint space and Cartesian space trajectory planning
- 6. Illustrate how Point To Point path planning is different from Continuous Path planning.
- 7. Illustrate how important is Lagrange function in describing the system variables?
- 8. Are robotic manipulators nonlinear in nature? Justify.
- 9. List the technical specifications / characteristics of a spray-painting robot?
- 10. Differentiate between precision and accuracy in measurement .

PART B

(Answer one full question from each module, each question carries 14marks)

MODULE I

11.	a)	Describe the various configurations of robotic manipulators with	(0)
		neat diagrams	(0)
	b)	Explain how useful are actuators in Industrial Robotics?	(6)

OR

- 12. a) Explain the classification of end effectors. (8)
 - b) Illustrate the general features of wheeled, legged and aerial robots. (6)

MODULE II

13. a) A point p (7, 3, 1) T is attached to frame {1}. Determine the (7)

532A4

coordinates of the point relative to the fixed frame as per following transformations i) Rotation of 90° about Z axis ii) Rotation of 90° about Y axis iii) A translation of [4,-3, 7].

Describe what understand bv b) do vou homogenous transformations? Discuss its importance in the modeling of (7)manipulators.

OR

- 14. a) Assume a unit vector $\vec{P} = [0 \ 1 \ 0]^T$ is moving with a moving coordinate frame {UVW} translated by 4 units along Z axis and rotated by an angle of π radians about the same axis of (7)stationary reference co-ordinate frame {XYZ}. (i) Determine the homogenous screw transformation matrix (ii) Calculate its new position after the transformation.
 - Illustrate how the D-H algorithm is used to obtain the forward b) (7)kinematic model of robot manipulator.

MODULE III

- 15. Apply A* algorithm to path planning of robots with a suitable a) (7)example.
 - The first joint of a 6-axis robot go from an initial angle of 30°to b) final angle of 75° in 5 seconds. Determine the joint angles at (7)1,2,3,4 seconds using third order polynomial.

OR

- 16. The second joint of a SCARA manipulator has been moved from a) Θ_2 =30°to 150°in 5 seconds. Find the cubic polynomial to (7)generate the smooth trajectory for the joint. What is the maximum velocity and acceleration for this trajectory?
 - Derive an expression to calculate the blending time of linear b) response if parabolic sections are blended at the beginning and (7)end of a motion.

MODULE IV

- Model the Computed Torque Control in manipulators with the 17. a) (7)help of block diagrams.
 - m

b)

(7)

Determine the force-acceleration relationship for the 1-DoF system using Lagrangian mechanics. (Wheels have negligible inertia).

А

532A4

Α

OR

- 18. a) With the help of a block diagram illustrate the concept of PD control with gravity compensation. (7)
 - b) Model the closed loop transfer function of a single axis PID control with necessary sketches. (7)

MODULE V

- 19. a) Illustrate the concept of differentially driven robots with ketches. (8)
 - b) Describe how effectively robots can be used for applications in the Medical, Mining, Space. (6)

OR

- 20. a) Describe the concept of precise control of peg in hole assembly using force guided robots. (8)
 - b) Describe how effectively robots can be used for applications in the Defense, Security, Domestic, and Entertainment. (6)
