225B1

Register No.:

Name:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

FIFTH SEMESTER INTEGRATED MCA DEGREE EXAMINATION (R), DECEMBER 2023

(2020 SCHEME)

- Course Code: 20IMCAT301
- Course Name: Numerical Methods
- Max. Marks: 60

Duration: 3 Hours

Non-programmable calculator may be permitted in the examination hall.

PART A (Answer all questions. Each question carries 3 marks)

- 1. Find AB and BA for the matrices $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$ and $B = \begin{bmatrix} -7 & -8 \\ 9 & 10 \\ 0 & -11 \end{bmatrix}$.
- 2. Find the inverse of the given matrix, if it exists, $A = \begin{bmatrix} 1 & 1 \\ 3 & 4 \end{bmatrix}$.
- 3. Determine whether the following system of equations is consistent:

$$\begin{aligned} x + y - z &= 1\\ x + y - z &= 0 \end{aligned}$$

4. Find the rank of the given matrices:

(i) $A = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 1 & -5 \end{bmatrix}$ (ii) $B = \begin{bmatrix} 4 & 1 \\ 2 & 3 \\ 2 & -2 \end{bmatrix}$

5. The product of two eigen values of the matrix $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ is 16.

Find the third eigen value of A.

- 6. Find the sum and product of the eigen values of the matrix $A = \begin{bmatrix} 3 & 1 & -1 \\ 0 & 2 & 6 \\ 0 & 0 & 6 \end{bmatrix}$.
- 7. Define principle of least squares.
- 8. What are the normal equations for fitting of a straight line y = ax + b.
- 9. Explain Lagrange's interpolation formula.
- 10. Estimate the value of f(7) from the following data using Newton's divided difference interpolation formula:

х	5	6	9	11
у	12	13	14	16

225B1

(6)

PART B

(Answer one full question from each module, each question carries 6 marks) MODULE I

11.	a)	Define trace of a :	matrix. Find the trace of the matrix	
		[3 0 1]		(2)
		$A = \begin{bmatrix} 1 & 0 & 2 \end{bmatrix}.$		()
		LO 0 1]		
			r0 1 11	

b) Find the inverse of the matrix $A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 3 \end{bmatrix}$ using Gauss-Jordan (4) method.

OR

12. a) Define symmetric and skew-symmetric matrices with examples. (3) b) Show that AB = CB but $A \neq C$ for $A = \begin{bmatrix} 3 & 2 \\ 1 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 4 \\ 1 & 2 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 6 \\ 3 & -4 \end{bmatrix}$. (3)

MODULE II

13. Write the set of equations associated with the given augmented matrix and the specified variables and then solve. (6)

 $[A|B] = \begin{bmatrix} 0 & 0 & 2 & 3 & 0 \\ 1 & 0 & 3 & 1 & 0 \\ 1 & 1 & 2 & 0 & 0 \end{bmatrix}, x_1, x_2, x_3, x_4.$

OR

14. Use Gaussian elimination method to solve the system of equations: x + 3y + 2z = 0 -x - 4y + 3z = -1 2x - z = 32x - y + 4z = 2(6)

MODULE III

15. Find the eigen values and eigen vectors of the matrix

$$A = \begin{bmatrix} 2 & 1 & -1 \\ 1 & 1 & -2 \\ -1 & -2 & 1 \end{bmatrix}.$$

OR

16. Diagonalize the matrix $A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$. (6)

225B1

(6)

(6)

(6)

MODULE IV

17. Apply method least squares to fit an equation of the form y = a + bx to the following data:

X	1	2	3	4	5
у	12	25	38	47	65

OR

18. Analyze the following data to fit a second-degree parabola of the form $y = a + bx + cx^2$.

x	0	1	2	3	4
У	1.2	1.7	2.1	2.8	5.9

MODULE V

19. Compute the approximate value of f(0.25) using Newton's forward interpolation formula from the following data:

х	0	0.5	1	1.5	2
у	1	1.0513	1.1052	1.1618	1.2214

OR

20. Use Lagrange's interpolation formula to find the value of y, when x = 10 from the following data:

		0		
х	5	6	9	11
У	12	13	14	16

(6)

A