G	1	1	89
\sim	_		\sim

(Pages: 2)

Reg.	No
------	----

Name.....

B.TECH. DEGREE EXAMINATION, MAY 2016

Eighth Semester

Branch: Applied Electronics and Instrumentation Engineering

MODERN CONTROL THEORY (A)

(Old Scheme-Prior to 2010 Admissions)

[Supplementary/Mercy Chance]

Time: Three Hours

Maximum: 100 Marks

Part A

Answer all questions.
Each question carries 4 marks.

- 1. What are the differences between classical control theory approach and modern control theory approach?
- 2. Express an n^{th} order system in its state variable form.
- 3. Given:

$$\frac{Y(s)}{X(s)} = \frac{s}{s^2 + 2s + 3}.$$

Find the revolvant matrix and express this transfer function in state variable form.

- 4. Convert the state model in to transfer function $\dot{X} = \begin{bmatrix} 1 & 1 \\ 2 & 6 \end{bmatrix} X + \begin{pmatrix} 1 \\ 1 \end{pmatrix} u$.
- 5. What is stabilizability? How will we test it?
- 6. Check the controllability of the s/m : $\dot{X} = \begin{bmatrix} 0 & 1 \\ 2 & 1 \end{bmatrix} X + \begin{pmatrix} 1 \\ 1 \end{pmatrix} u$.
- 7. What is Bass Gura pole placement formula?
- 8. What is a regulator system?
- 9. Draw a simulink model for an interacting water take system.
- 10. Write commands for checking the observability of a system.

 $(10 \times 4 = 40 \text{ marks})$

Part B

Answer all questions.
Each full question carries 12 marks.

11. Derive the lagrange equation.

Or

- 12. Drive the state model of a armature controlled d.c. motor.
- 13. Decompose the transfer function $\frac{u(s)}{u(s)} = \frac{10(s+4)}{s(s+1)(s+3)}$ in to direct, cascade and parallel form.

Or

- 14. How is the state transition matrix computed. Explain all the methods.
- 15. Test the observability of the system using Kalman's and Gilberts Test:

$$\dot{\mathbf{X}} = \begin{bmatrix} 0 & 0 & 1 \\ -2 & -3 & 0 \\ 0 & 2 & -3 \end{bmatrix} \mathbf{X} + \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix} u.$$

Or

- $y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} X$.
- 16. Derive the state model for a missile guidance system.
- 17. What are the three methods that are used to design a state feedback control law for a regulator system?

Or

18. Consider the system $\dot{\mathbf{X}} = \begin{bmatrix} -1 & 1 \\ 1 & -2 \end{bmatrix} \mathbf{X} + 0 \ u \quad y = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{X}$.

Design a full order observer. The desired eigen values of the observer matrix are $\mu_1 = -5$; $u_2 = -5$.

19. What are the different flocks available in simulink. Explain each.

Or

20. What is m-file? Write a M file to find the step responce of a RLC circuit.

 $(5 \times 12 = 60 \text{ marks})$