(Pages: 2)

	112	
Reg. No	TAXAM	
BT		

B.TECH. DEGREE EXAMINATION, MAY 2015

Seventh Semester

Branch : Electronics and Communication Engineering/Applied Electronics and Instrumentation

VLSI TECHNOLOGY (L, A)

(Old Scheme—Prior to 2010 Admissions)

[Supplementary]

Time: Three Hours

Maximum: 100 Marks

Part A

Answer all questions.
Each question carries 4 marks.

- 1. Explain the process of crystal growth.
- 2. Elaborate X-ray lithography process.
- 3. Discuss junction isolation and dielectric isolation.
- 4. List the difference between PMOS and NMOS fabrication process.
- 5. Decribe latchup problem in CMOS.
- 6. Write a brief note on scaling of MOS structures.
- 7. Using a diagram show the CMOS logic implementation using NOR.
- 8. Explain how power dissipation problems are handled in CMOS.
- 9. Discuss the principles specific to GaAs fabrication.
- 10. Explain the crystal structure of GaAs using diagrams.

 $(10 \times 4 = 40 \text{ marks})$

Part B

Answer all questions.
Each question carries 12 marks.

11. With neat diagram, explain electron beam and X-ray lithography.

Or

- 12. Discuss the various ways in which lithography can be performed.
- 13. Explain with relevance fig and steps of CMOS fabrication techniques.

Or

14. Discuss the fabrication of resistors in a region grown on a substrate.

Turn over

15. Elaborate with neat figure metal gate and silicon gate and its oxide isolation.

Or

- 16. Discuss the BiCMOS fabrication steps and the circuit design process.
- 17. With neat derivation derive dynamic power dissipation.

Or

- 18. Explain the working of a serial shifter and disuss its design.
- 19. With neat figure, explain sub-micron CMOS technology.

Or

20. Explain the chennelling effect and how it affects the fabrication process.

 $(5 \times 12 = 60 \text{ marks})$

