Reg.	No

Name.....

B.TECH. DEGREE EXAMINATION, NOVEMBER 2014

Seventh Semester

Branch: Applied Electronics and Instrumentation Engineering

AI 010 706 L01-ROBOTICS (Elective II)

(New Scheme—2010 Admission onwards)

[Regular/Supplementary]

Time: Three Hours

Maximum: 100 Marks

Part A

Answer all questions. Each question carries 3 marks.

- 1. What do you mean by degree of Freedom of a robotic arm?
- 2. What are tactile sensors?
- 3. Compare the pneumatic and hydraulic actuators.
- 4. What are the different components of a robotic manipulator?
- 5. What is smoothing?

 $(5 \times 3 = 15 \text{ marks})$

Part B

Answer all questions. Each question carries 5 marks.

- 6. Define a robot. Define the major components of a robot.
- 7. Discuss about any one of the types of gripper mechanism.
- 8. Explain Adaptive control.
- 9. What are the advantages of teach pendant programming?
- 10. What are the major components in robotic vision system?

 $(5 \times 5 = 25 \text{ marks})$

Part C

Answer all questions. Each question carries 12 marks.

11. (a) Explain the anatomy of a robot.

Or

(b) Describe the classification of robots according to their control system.

Turn over

12. Explain the various features of membership functions used in fuzzy logic and also compare their characteristics.

Module 2

13. Final algebraic sum, bounded sum, intersection and product of the two given fuzzy sets A and B respectively:

$$\tilde{A} = \left\{ \frac{1}{2} + \frac{0.6}{4} + \frac{0.5}{6} + \frac{0.3}{8} + \frac{0.2}{9} + \frac{0}{10} \right\}$$

$$\mathbf{B} = \left\{ \frac{0}{2} + \frac{0.3}{4} + \frac{0.4}{6} + \frac{0.2}{8} + \frac{0.5}{9} + \frac{1}{10} \right\}$$

Or

14. Explain extension principle with an application.

Module 3

15. Explain the reflexivity, symmetry and transitivity properties of fuzzy relation.

Or

16. Given two fuzzy relations A(x, y) and B(y, z) Compute A o B using Max-Min and Max product composition.

$$\mathbf{\tilde{A}} = \begin{bmatrix} 0.2 & 0.3 \\ 0.5 & 0.7 \end{bmatrix}$$

$$\tilde{\mathbf{B}} = \begin{bmatrix} 0.3 & 0.6 & 0.7 \\ 0.1 & 0.8 & 0.6 \end{bmatrix}$$

17. Describe an application of fuzzy logic in pattern recognition

Or

18. Discuss the fuzzy C-means algorithm.

Module 5

19. With a block diagram explain a fuzzy logic controller.

Or

- 20. (a) Illustrate negation, Conjunction, disjunction and implication operation on fuzzy sets with examples.
 - (b) Compare sugeno and mamdani fuzzy inference systems.

 $(5 \times 12 = 60 \text{ marks})$