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PART A
(Answer all questions. Each question carries 3 marks)
1. Find the smallest value of n such that K,, has atleast 500 edges.
2. Define complete bipartite graph. Find the number of edges in K, , .
3. Check whether the following graph is Euler. If so find an Euler tour in it.
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4. Define Complement of a graph. Check whether C; is self complementary or
not.
S. Find the center of the following graph
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6.  Prove that a binary tree on n vertices has nTH pendant vertices.

7. List out any 5 different cut-sets and hence determine the edge connectivity of

the following graph.
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8. Prove that complete bipartite graph Kj 3 is non planar.
9. Draw the graph with the following matrix as its incidence matrix
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10. Define proper coloring. What is the chromatic number of a tree with two or

more vertices?

PART B
(Answer one full question from each module, each question carries 14marks)
MODULE I
11. a) Define a Complete Graph with an example. What is the number of @)
edges in a complete graph on n vertices? Justify your answer.
b) Prove that the number of odd vertices in any graph is always @)
even.
OR
12. a) Prove that a simple graph with n vertices and k components can
—K)(n— 7
have at most Z=00=k+D edges 7
b)  Write a short note on walk, path, cycle and connected graph with @)
an example.
MODULE II
13. a) Prove that a graph G is Euler if degree of all the vertices in G is @)

even.

b) Distinguish between symmetric and asymmetric digraph with
examples. Draw an example of an equivalence digraph on 4 (7)
vertices.

OR
14. a) Explain Konigsberg bridge problem with figure. (7)

b)  Prove that, In a complete graph K,,, where n > 3 is odd, there are (7)
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nT_l edge disjoint Hamiltonian cycles.
MODULE III

15. a) Prove that a connected graph with n vertices and n-1 edges is a @)

tree.
b) Find the minimal spanning tree of the following weighted graph

by using Prim’s Algorithm
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16. a) Prove that every connected graph has at least one spanning tree. (7)
b) Find the length of the shortest path from the vertex A to all other

vertices of the given weighted graph G using Dijkstra’s Algorithm
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MODULE IV
17. a) State and prove Euler’s theorem on plane graphs. (7)
b)  Prove that every internal vertex of a tree is a cut vertex. (7)
OR
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18. a) Define vertex connectivity and edge connectivity of a graph with
an example. Find the edge connectivity of a complete bipartite
graph K, ,.

b) Prove that if G is a planer graph without parallel edges on n
vertices and e edges, where e > 3, thene < 3n —6.
MODULE V
19. a) 1. Prove that every tree with two or more vertices is 2- chromatic.
2. Find the chromatic number of Ky and Cg.
b) Find the adjacency matrix corresponding to the graph given by
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20. a) Define a cycle matrix in a graph and hence find the cycle matrix

of the following graph
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b)  Prove that every planar graph can be properly colored with five
colors.
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