Reg.	No

Name.....

B.TECH. DEGREE EXAMINATION, MAY 2014

Sixth Semester

Branch: Applied Electronics and Instrumentation Engineering
AI 010 606 L01—MECHATRONICS (Elective I) [AI]

(New Scheme)

Time: Three Hours

Maximum: 100 Marks

Part A

Answer all questions.

Each question carries 3 marks.

- 1. What is Mechatronics?
- 2. What do you meant by filtering on the context of signal conditioning?
- 3. Draw the symbol for directional valve.
- 4. What are the challenges facing MEMS industry today?
- 5. What are the basic elements used for describing a thermal system?

 $(5 \times 3 = 15 \text{ marks})$

Part B

Answer all questions.

Each question carries 5 marks.

- 6. List the advantages and disadvantages of integrating electronics to mechanical devices.
- 7. Explain the need for signal conditioning in a Mechatronic system. Write short note about various signal conditioning operations performed.
- 8. Write short notes on stepper motors.
- 9. Explain in detail the applications of MEMS.
- 10. Derive the governing equation of a thermal system.

 $(5 \times 5 = 25 \text{ marks})$

Part C

Answer all questions.

Each full question carries 12 marks.

11. Compare and contrast the traditional design of a watch with that of the mechatronics designed product involving a microprocessor.

Or

Turn over

- 12. Compare the traditional approach and mechatronic approach to process control and instrumentation.
- 13. With a neat labelled diagram, explain the various building blocks of a data acquisition system.

Or

- 14. Explain in detail the role of microprocessors and microcontrollers in Mechatronic system design.
- 15. Explain with neat diagram of rotary actuators constructional detail and working principles.

Or

- 16. What is the basic principle used in the construction of piezoelectric actuators. Explain its application.
- 17. Explain the following MEMs applications:
 - (a) Accelerometers.
 - (b) Pressure sensors.

 $(2 \times 6 = 12 \text{ marks})$

Or

- 18. Explain the following MEMs application:
 - (a) Micro pumps.
 - (b) Inkjet printers.

 $(2 \times 6 = 12 \text{ marks})$

19. Explain briefly how the Mathematical model of a mechanical system is build up.

Or

20. Write short notes on fluid power systems.

 $[5 \times 12 = 60 \text{ marks}]$

