Reg.	No

Name.....

B.TECH. DEGREE EXAMINATION, MAY 2014

Sixth Semester

Branch: Applied Electronics and Instrumentation

CONTROL SYSTEM THEORY (A)

(Prior to 2010 Admissions)

[Old Scheme—Supplementary/Mercy Chance]

Time: Three Hours

Maximum: 100 Marks

Graph sheet and Semilog sheets to be supplied.

Part A

Answer all questions briefly. Each question carries 4 marks.

- 1. Derive the electrical analogous quantities in F-V analogy for a simple mechanical translational system containing M, B, K and F.
- 2. Obtain the transfer function $\frac{X(s)}{F(s)}$ of the following system shown in Fig. 1.

- 3. Obtain step response of first order system.
- 4. Derive the expression for the static error coefficients in terms dynamic error coefficients.
- 5. "Addition of poles to the loop transfer function reduces the closed loop stability". Justify:
- 6. Define and explain the following frequency domain specifications:
 - Bandwidth.
 - (ii) Peak resonance.

Turn over

- 7. Explain how the phase margin and gain margin can be read using Bode plots. Draw a typical Bode plot for a stable system and illustrate.
- 8. The closed loop transfer function of a system is:

$$\frac{C(s)}{R(s)} = \frac{k}{s^4 + 6s^3 + 30 s^2 + 60s + k}.$$

Determine the range of k, for the closed loop poles to lie in the left of $\sigma = -1$ in the s-plane.

9. The characteristic equation of a discrete data system is:

$$z^3 + 3.3z^2 + 4z + 0.8 = 0$$
. Perform Jury's test and comment on stability.

10. Differentiate the characteristics of lag and lead compensation using RC networks.

 $(10 \times 4 = 40 \text{ marks})$

Part B

Answer all questions.
Each full question carries 12 marks.

11. Obtain closed loop transfer function of the system given in Fig. 2 below, using signal flow chart.

12. For the block diagram shown in Fig. 3, determine the overall transfer function $\frac{C(s)}{R(s)}$ by block diagram reduction and verify the results by using the Mason's gain formula.

13. Find the values of $k_{\rm p}$, $k_{\rm v}$, $k_{\rm a}$ and the steady state error for an input of 5u(t), 5tu(t) and $5t^2$ u(t) for the system shown in Fig. 4.

14. (a) The open loop transfer function of a unity feedback system is $G(s) = \frac{k}{s(\tau s + 1)}$ where k and τ are positive constants. By what factor should the amplifier gain be reduced so that the

Or

(b) For a system with $GH(s) = \frac{5}{s+5}$, calculate the generalized error coefficients and steady state error. Assume r(t) = 6+5t.

peak overshoot of unit step response of the closed loop system is reduced from 75 % to 25 %?

- 15. Design a unity feedback system with plant transfer function $G(s) = \frac{k}{(s+1)(s+5)}$, given the following specifications:
 - (a) Overshoot ≤ 20 %
 - (b) Rise time ≤ 1 sec.
 - (c) Static positional error constant ≥ 4 .

Use root locus technique.

Or

16. Draw the Bode plot for the system with open loop transfer function: $G(s) H(s) = \frac{10}{s(1+s)(1+0.5s)}$. Hence comment on closed loop stability of the system.

Turn over

17. The open loop transfer function of a negative feedback system is $G(s)H(s) = \frac{s+1}{(s+0.1)(s^2+4)}$.

Determine the stability of the system, using Nyquist stability criteria.

Or

- 18. Plot the Nichol's chart of the open loop transfer function of a unity feedback system $G(s) = \frac{150}{s(s+5)}$.
- 19. (a) A dynamic system is represented by a state model

$$\dot{\mathbf{X}} = \begin{bmatrix} 0 & 2 \\ -3 & -5 \end{bmatrix} \mathbf{X} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u. \text{ Given } \mathbf{X} (0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$

Determine state transition matrix, and obtain the unit step response of the system.

(b) Find the discrete time state transition matrix for the following system, whose discrete state equations are:

$$\dot{\mathbf{X}}(k+1) = \begin{bmatrix} 0 & 1 \\ -10 & 6 \end{bmatrix} \mathbf{X}(k) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(k)$$

$$y(k) = [1 \ 1] X(k).$$

Or

- 20. A unity feedback system with a forward transfer function $G(s) = \frac{k}{s(s+9)}$ is operating with a closed loop system response that has 15 % overshoot.
 - (a) Design a lag compensator using time domain method to improve the steady state error by a factor of 20.
 - (b) Evaluate the steady state error of compensated system for a unit ramp input.

 $(5 \times 12 = 60 \text{ marks})$