\mathbf{F}	2	C	10
T.	U	U	14

(Pages: 2)

Reg.	No	
Name	e	

B.TECH. DEGREE EXAMINATION, NOVEMBER 2014

Fifth Semester

Branch: Applied Electronics and Instrumentation Engineering

Al 010 504 - DATA ACQUISITION SYSTEM (AI)

(New Scheme – 2010 Admission onwards)

[Regular/Improvement/Supplementary]

Time: Three Hours

Maximum: 100 Marks

Part A

Answer all questions.

Each question carries 3 marks.

- 1. List out the need for data acquisition.
- 2. Define Sensor.
- 3. What is meant by shielding?
- 4. Define anti-aliasing filter.
- 5. Write a short note on time division multiplexing.

 $(5 \times 3 = 15 \text{ marks})$

Part B

Answer all questions.
Each question carries 5 marks.

- 6. Distinguish analog and digital data.
- 7. Explain speed sensors.
- 8. Differentiate single ended and differential measurements.
- 9. Define and explain sampling rate and its theorem.
- 10. Distinguish RSS and RMS error.

 $(5 \times 5 = 25 \text{ marks})$

Part C

Answer all questions.
Each question carries 12 marks.

11. Discuss the various elements of a typical data acquisition system.

Or

12. Explain different kind of signals and its properties in data acquisition system.

Turn over

13. Explain: (i) Liquid level sensors; (ii) Humidity sensors.

Or

- 14. Explain the detailed operation of temperature sensor with neat sketch.
- 15. Explain shielding and guarding and its requirements in detail.

Or

- 16. Explain the frequency response characteristics of RC filters LPF, HPF, BPF and BSF with neat diagrams.
- 17. What is the principle of digital ramp ADC? Explain its features in detail.

Or

- 18. Write a note on : (i) Flash ADC ; (ii) Successive approximation ADC.
- 19. Explain multiplexing and de-multiplexing with diagram.

Or

20. Explain in detail about bit interleaved multiplexing.

 $(5 \times 12 = 60 \text{ marks})$