Reg.	No
------	----

Name.....

B.TECH. DEGREE EXAMINATION, NOVEMBER 2014

Fifth Semester

Branch: Common to all Branches except C.S. and I.T.

EN 010 501-A-ENGINEERING MATHEMATICS-IV

(Regular/Improvement/Supplementary)

[New Scheme—2010 Admission onwards]

Time: Three Hours Maximum: 100 Marks

Part A

Answer all questions.

Each question carries 3 marks.

- 1. An electrostatic field in the xy-plane is given by the potential function $\phi = 3x^2y y^3$, find the stream function.
- 2. Find the image of the circle |z-1|=1 in the complex plane under the mapping $w=\frac{1}{z}$.
- 3. Find the real root of the equation $x^2 2x 5 = 0$ by the method of false position correct to 3 decimal places.
- 4. Solve $\frac{dy}{dx} = 1 y$, y(0) = 0 in the range $0 \le x \le 3$ by taking h = 0.1 by the modified Euler's method.
- 5. Construct the dual of the L.P.P.

Maximize $z = 4x_1 + 9x_2 + 2x_3$

subject to $2x_1 + 3x_2 + 2x_3 \le 7$, $3x_1 - 2x_2 + 4x_3 = 5$; $x_1, x_2, x_3 \ge 0$.

 $(5 \times 3 = 15 \text{ marks})$

Part B

Answer all questions.

Each question carries 5 marks.

- 6. Show that $\sqrt{|xy|}$ is not analytic at the origin, although Cauchy-Riemann equations are satisfied at the point.
- 7. Find the Taylor's series expansion of $f(z) = \frac{2z^3 + 1}{z^2 + z}$ about z = i.

- 8. Find by the iteration method, a real root of $2x \log_{10} x = 7$.
- 9. Solve $\frac{dy}{dx} = x + z$, $\frac{dz}{dx} = x y^2$ with y(0) = 2, z(0) = 1 to get y(0.1), y(0.2), z(0.1) and z(0.2)approximately by Taylor's series.
- 10. Using graphical method, solve the following L.P.P.

Maximize $z = 2x_1 + 3x_2$

subject to $x_1 - x_2 \le 2$

$$x_1 + x_2 \ge 4,$$

 $x_1, x_2 \ge 0.$

 $(5 \times 5 = 25 \text{ marks})$

Part C

Answer all questions. Each full question carries 12 marks.

11. (a) Determine the analytic function f(z) = u + iv if $u - v = \frac{\cos x + \sin x - e^{-y}}{2(\cos x - \cosh y)}$ and $f(\pi/2) = 0$.

(b) Find the bilinear transformation which maps the points z = 1, i, -1 into the points w = i, 0, -i. Hence find the image of |z| < 1.

(6 marks)

Or

12. (a) Prove that the function f(z) defined by $f(z) = \frac{x^3(1+i)-y^31-i}{x^2+y^2}$, $z \neq 0$ and f(0) = 0 is continuous and the Cauchy-Riemann equations are satisfied at the origin, yet f'(0) does not exist.

(6 marks)

(b) Show that the transformation $w = \frac{3-z}{z-2}$ transforms the circle with center $(\frac{5}{2}, 0)$ and radius $\frac{1}{2}$ in the z-plane into the imaginary axis in the w-plane and the interior of the circle into the right half of the plane.

(6 marks)

- 13. (a) Evaluate $\int_{C} \frac{z-3}{z^2+2z+5} dz$, where C is the circle (i) |z|=1; (ii) |z+1-i|=2; (iii) |z+1+i|=2. (8 marks)
 - (b) Determine the poles of the function $f(z) = \frac{x^2}{(z-1)^2(z+2)}$ and the residue at each pole.

(4 marks)

- 14. (a) Find the Laurent's expansion of $f(z) = \frac{7z-2}{(z+1)z(z-2)}$ in the region 1 < |z+1| < 3. (5 marks)
 - (b) Show the method of residues, that $\int_0^{\pi} \frac{a}{a^2 + \sin^2 \theta} d\theta = \frac{\pi}{\sqrt{1 + a^2}}.$ (7 marks)
- 15. (a) Using Newton's iterative method, find the real root of $x \log_{10} x = 1.2$ correct to five decimal places.

(b) Solve by Gauss-Seidel method:

$$10x + 2y + z = 9$$

$$2x + 20y - 2z = -44$$

$$-2x + 3y + 10z = 22.$$

(6 marks)

Or

- 16. (a) Find a real root of the equation $x^3 x 11 = 0$, correct to 4 decimal places using the bisection method.
 - (6 marks)
 - (b) Find the root of the equation $\cos x xe^x = 0$ by secant method correct to four decimal places.
 - (6 marks)
- 17. Using Runge-Kutta method of fourth order, solve $\frac{dy}{dx} = yz + x$, $\frac{dz}{dx} = xz + y$ given that y(0) = 1, z(0) = -1 for y(0.2), z(0.2).

Or

- 18. Apply Milne's method, to find a solution of the differential equation $y' = x y^2$ in the range $0 \le x \le 1$ for the boundary condition y = 0 at x = 0.
- 19. (a) What is the maximization transport problem? How do you solve it?

(3 marks)

(b) Using simplex method solve the LPP

 $Maximize z = 5x_1 + 3x_2$

subject to $x_1 + x_2 \le 2$

$$5x_1+2x_2\leq 10$$

$$3x_1 + 8x_2 \le 12,$$

$$x_1, x_2 \geq 0.$$

(9 marks)

20. Find the initial basic feasible solution of the following transportation problem by Vogel's approximation method (VAM). Here, $\mathbf{F_1}$, $\mathbf{F_2}$ and $\mathbf{F_3}$ are factories, and $\mathbf{W_1}$, $\mathbf{W_2}$ and $\mathbf{W_3}$ are warehouses.

	W ₁	W ₂	W_3	W ₄	Production of Factories
F ₁	21	16	25	13	11
$\mathbf{F_2}$	17	18	14	23	13
F ₃	32	27	18	41	19
Capacity of the warehouse	6	10	12	15	43

 $(5 \times 12 = 60 \text{ marks})$

F	362	1

(Pages: 4)

Reg.	No	
_		

Name:

B.TECH. DEGREE EXAMINATION, NOVEMBER 2014

Fifth Semester

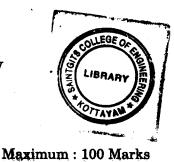
Branch: Common to all Branches except C.S. and I.T.

EN 010 501-A-ENGINEERING MATHEMATICS-IV

(Regular/Improvement/Supplementary)

[New Scheme-2010 Admission onwards]

Time: Three Hours



Part A

Answer all questions.

Each question carries 3 marks.

- 1. An electrostatic field in the xy-plane is given by the potential function $\phi = 8x^2y y^3$, find the stream function.
- 2. Find the image of the circle |z-1|=1 in the complex plane under the mapping $w=\frac{1}{z}$.
- 3. Find the real root of the equation $x^2 2x 5 = 0$ by the method of false position correct to 3 decimal places.
- 4. Solve $\frac{dy}{dx} = 1 y$, y(0) = 0 in the range $0 \le x \le 3$ by taking h = 0.1 by the modified Euler's method.
- 5. Construct the dual of the L.P.P.

Maximize $z = 4x_1 + 9x_2 + 2x_3$

subject to $2x_1 + 3x_2 + 2x_3 \le 7$, $3x_1 - 2x_2 + 4x_3 = 5$; $x_1, x_2, x_3 \ge 0$.

 $(5 \times 3 = 15 \text{ marks})$

Part B

Answer all questions.

Each question carries 5 marks.

- 6. Show that $\sqrt{|xy|}$ is not analytic at the origin, although Cauchy-Riemann equations are satisfied at the point.
- 7. Find the Taylor's series expansion of $f(z) = \frac{2z^2 + 1}{z^2 + z}$ about z = i.

8. Find by the iteration method, a real root of $2x - \log_{10} x = 7$.

9. Solve $\frac{dy}{dx} = x + z$, $\frac{dz}{dx} = x - y^2$ with y(0) = 2, z(0) = 1 to get y(0.1), y(0.2), z(0.1) and z(0.2) approximately by Taylor's series.

10. Using graphical method, solve the following L.P.P.

 $Maximize z = 2x_1 + 3x_2$

subject to $x_1 - x_2 \le 2$

 $x_1+x_2\geq 4,$

 $x_1, x_2 \geq 0.$

$(5 \times 5 = 25 \text{ marks})$

Part C

Answer all questions.

Each full question carries 12 marks.

11. (a) Determine the analytic function f(z) = u + iv if $u - v = \frac{\cos x + \sin x - e^{-y}}{2(\cos x - \cosh y)}$ and $f(\pi/2) = 0$.

(6 marks)

(b) Find the bilinear transformation which maps the points z = 1, i, -1 into the points w = i, 0, -i. Hence find the image of |z| < 1.

(6 marks)

Or

12. (a) Prove that the function f(z) defined by $f(z) = \frac{x^3(1+i)-y^31-i}{x^2+y^2}$, $z \neq 0$ and f(0) = 0 is continuous and the Cauchy-Riemann equations are satisfied at the origin, yet f'(0) does not exist.

(6 marks)

(b) Show that the transformation $w = \frac{3-z}{z-2}$ transforms the circle with center $\left(\frac{5}{2}, 0\right)$ and radius $\frac{1}{2}$ in the z-plane into the imaginary axis in the w-plane and the interior of the circle into the right half of the plane.

(6 marks)

13. (a) Evaluate $\int_{C} \frac{z-3}{z^2+2z+5} dz$, where C is the circle (i) |z|=1; (ii) |z+1-i|=2; (iii) |z+1+i|=2. (8 marks)

(b) Determine the poles of the function $f(z) = \frac{x^2}{(z-1)^2(z+2)}$ and the residue at each pole.

(4 marks)

- 14. (a) Find the Laurent's expansion of $f(z) = \frac{7z-2}{(z+1)z(z-2)}$ in the region 1 < |z+1| < 3. (5 marks)
 - (b) Show the method of residues, that $\int_0^{\pi} \frac{a}{a^2 + \sin^2 \theta} d\theta = \frac{\pi}{\sqrt{1 + a^2}}.$ (7 marks)
- 15. (a) Using Newton's iterative method, find the real root of $x \log_{10} x = 1.2$ correct to five decimal places.
 - (b) Solve by Gauss-Seidel method:

$$10x + 2y + z = 9$$

$$2x + 20y - 2z = -44$$

$$-2x + 3y + 10z = 22.$$

(6 marks)

(6 marks)

Or

- 16. (a) Find a real root of the equation $x^3 x 11 = 0$, correct to 4 decimal places using the bisection method.
 - (6 marks)
 - (b) Find the root of the equation $\cos x xe^x = 0$ by secant method correct to four decimal places.

 (6 marks)
- 17. Using Runge-Kutta method of fourth order, solve $\frac{dy}{dx} = yz + x$, $\frac{dz}{dx} = xz + y$ given that y(0) = 1, z(0) = -1 for y(0.2), z(0.2).

Or

- 18. Apply Milne's method, to find a solution of the differential equation $y' = x y^2$ in the range $0 \le x \le 1$ for the boundary condition y = 0 at x = 0.
- 19. (a) What is the maximization transport problem? How do you solve it?

(3 marks)

(b) Using simplex method solve the LPP

 $Maximize z = 5x_1 + 3x_2$

subject to $x_1 + x_2 \le 2$

$$5x_1+2x_2\leq 10$$

$$3x_1 + 8x_2 \le 12,$$

$$x_1, x_2 \geq 0.$$

(9 marks)

Or

20. Find the initial basic feasible solution of the following transportation problem by Vogel's approximation method (VAM). Here, F_1 , F_2 and F_3 are factories, and W_1 , W_2 and W_3 are warehouses.

	W ₁	W ₂	$\mathbf{w}_{\mathbf{s}}$	W ₄	Production of Factories
F ₁	21	16	25	13	11
F ₂	17	18	14	23	13
F ₃	32	27	18	41	19
Capacity of the warehouse	6	10	12 ·	15	43

 $(5 \times 12 = 60 \text{ marks})$

Reg.	No	*******

Name....

B.TECH. DEGREE EXAMINATION, NOVEMBER 2014

Fifth Semester

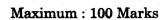
Branch: Computer Science and Engineering/Information Technology

EN 010 501-B—ENGINEERING MATHEMATICS—IV (CS, IT)

(Regular/Improvement/Supplementary)

[New Scheme—2010 Admission onwards)

Time: Three Hours



EGE

LIBRAR

Part A

Answer all questions.

Each question carries 3 marks.

- 1. Evaluate $\Delta (\sin 2x \cos 4x)$.
- Find the Z-transform of $a^n \cos n\theta$.
- 3. Let a be a numeric function such that $a_r = \begin{cases} 2, & 0 \le r \le 3 \\ 2^{-r} + 5, & r \ge 4 \end{cases}$. Determine Δa and ∇a .
- 4. Evaluate $\int_0^{1+i} (x^2 iy) dz$ along the path $y = x^2$.
- 5. Explain the arrival pattern of customers.

 $(5 \times 3 = 15 \text{ marks})$

Part B

Answer all questions. Each question carries 5 marks.

6. Using Newton's divided difference formula, Evaluate f(8) and f(15) given:

5

11 13

48

100

294

1210

- 900 2028
- 7. Use convolution theorem to find the inverse Z-transform of $\frac{8z^2}{(2z-1)(4z+1)}$
- 8. Find the particular solution of the difference equation $a_r + 5a_{r-1} + 6a_{r-2} = 3r^2$.
- 9. If $f(\xi) = \int_{C} \frac{3z^2 + 7z + 1}{z \xi} dz$, where C is the circle |z| = 2, find the values of f(3), f'(1-i) and f''(1-i).
- 10. State and explain Little's formula. What are its applications?

 $(5 \times 5 = 25 \text{ marks})$

Part C

Answer all questions.

Each full question carries 12 marks.

11. (a) Using Newton's forward interpolation formula, find y at x = 8 from the following table:—

 x:
 0
 5
 10
 15
 20
 25

 y:
 7
 11
 14
 18
 24
 32

(6 marks)

(b) Evaluate $\int_0^4 e^x dx$ by Simpson's rule, given that e = 2.72, $e^2 = 7.39$, $e^3 = 20.09$. $e^4 = 54.6$ and compare it with the actual value.

(6 marks)

Or

12. (a) From the following table, calculate $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$ and $\frac{d^3y}{dx^3}$ at x = 1.5

x: 1.5 2.0 2.5 3.0 3.5 4.0

y: 3.375 7.0 13.625 24.0 38.875 59.0

(6 marks)

(b) Apply (i) Trapezoidal rule; and (ii) Simpson's $\frac{1}{3}$ rule, to find an approximate value of $\int_3^8 x^4 dx$ by taking six equal subintervals. Compare it with the exact value.

(6 marks)

13. (a) Find $Z^{-1}\left(\frac{4z}{z-1^3}\right)$ by the long division method.

(6 marks)

(b) Solve $y_{n+1} + 4y_{n+1} + 3y_n = 3^n$ with $y_0 = 0$, $y_1 = 1$.

(6 marks)

Or

14. (a) Find the inverse Z-transform of $\frac{2(z^2 - 5z + 6.5)}{(z-2)(z-3)^2}$ for 2 < |z| < 3.

(b) Solve $y_{n+2} - 2y_{n+1} + y_n = 3n + 5$.

(6 marks)

(6 marks)

15. (a) Determine the generating function of the numeric function a_{r} ,

where $a_r = \begin{cases} 2^r, & \text{if } r \text{ is even} \\ 2^{-r}, & \text{if } r \text{ is odd} \end{cases}$

(6 marks)

(b) Solve the difference equation $a_r - 5a_{r-1} + 6a_{r-2} = 2^r + r$.

(6 marks)

16. (a) Determine the discrete numeric function corresponding to the generating function $A(z) = (1+z)^n + (1-z)^n$.

(6 marks)

(b) Determine the particular solution for the difference equation $a_r - 3a_{r-1} + 2a_{r-2} = 2^r$.

(6 marks)

17. (a) Expand $\frac{1}{z^2-3z+2}$ in the region (i) |z|<1; (ii) 1<|z|<2; (iii) |z|>2; (iv) 0<|z-1|<1.

(9 marks)

(b) Determine the poles of the function $f(z) = \frac{z^2}{(z-1)^2(z+2)}$ and the residue at each pole.

(3 marks)

18. (a) Evaluate by contour integration $\int_{-\infty}^{\infty} \frac{x^2}{(x^2+1)(z^2+4)} dx.$

(9 marks)

(b) Expand the function $\frac{1}{z+1}$, about z=1 in Taylor's series.

(3 marks)

- 19. (a) In a supermarket, the average arrival rate of customers is 10/hr. The average time taken at the bill and cash desk is 4.5 min. This time is exponentially distributed:
 - (i) How long will be customer expect to wait for service at the cash desk?
 - (ii) What is the chance that the queue length will exceed 5?
 - (iii) What is the probability that the cashier is working?

(7 marks)

(b) Explain the different service disciplines in the case of a queuing system.

(5 marks)

Or

- 20. (a) In a railway marshalling yard, goods trains arrive at a rate of 30 trains per day. Assuming that the inter-arrival time follows an exponential distribution and the servicetime distribution is also exponential with an average 36 minutes. Calculate the following:—
 - (i) The mean queue size.
 - (ii) The probability thats the queue size exceeds 10.
 - (iii) If the input of trains increases to an average 33 per day, what will be the change in (i) and (ii).

(7 marks)

- (b) A T.V. repairmen finds that the time spent on his job has an exponential/distribution with mean 30 minutes. If the repaired set arrive on an average of 10 per 8-hour day with Poisson:
 - (i) What is the repairmen's idle time each day?
 - (ii) What is the average queue length?
 - (iii) Find average number of jobs in the system.

(5 marks)

 $[5 \times 12 = 60 \text{ marks}]$

Reg.	No	•••	•

Name.....

B.TECH. DEGREE EXAMINATION, NOVEMBER 2014

Fifth Semester

Branch: Computer Science and Engineering/Information Technology

EN 010 501-B-ENGINEERING MATHEMATICS-IV (CS, IT)

(Regular/Improvement/Supplementary)

[New Scheme—2010 Admission onwards)

Time: Three Hours

Maximum: 100 Marks

LIBRAR

Part A

Answer all questions.

Each question carries 3 marks.

- 1. Evaluate $\Delta (\sin 2x \cos 4x)$.
- 2. Find the Z-transform of $a^n \cos n\theta$.
- 3. Let a be a numeric function such that $a_r = \begin{cases} 2, & 0 \le r \le 3 \\ 2^{-r} + 5, & r \ge 4 \end{cases}$. Determine Δa and ∇a .
- 4. Evaluate $\int_0^{1+i} (x^2 iy) dz$ along the path $y = x^2$.
- 5. Explain the arrival pattern of customers.

 $(5 \times 3 = 15 \text{ marks})$

Part B

Answer all questions.
Each question carries 5 marks.

6. Using Newton's divided difference formula, Evaluate f(8) and f(15) given:

x: 4 5 7 10 11 13

y: 48 100 294 900 1210 2028

- 7. Use convolution theorem to find the inverse Z-transform of $\frac{8z^2}{(2z-1)(4z+1)}$.
- 8. Find the particular solution of the difference equation $a_r + 5a_{r-1} + 6a_{r-2} = 3r^2$.
- 9. If $f(\xi) = \int_C \frac{3z^2 + 7z + 1}{z \xi} dz$, where C is the circle |z| = 2, find the values of f(3), f'(1-i) and f''(1-i).
- 10. State and explain Little's formula. What are its applications?

 $(5 \times 5 = 25 \text{ marks})$

Part C

Answer all questions.

Each full question carries 12 marks.

· 11. (a) Using Newton's forward interpolation formula, find y at x = 8 from the following table:—

x: 0 5 10 15 20 25

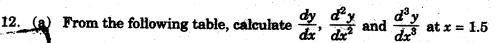
y: 7 11 14 18 24 32

(6 marks)

(b) Evaluate $\int_0^4 e^x dx$ by Simpson's rule, given that e = 2.72, $e^2 = 7.39$, $e^3 = 20.09$. $e^4 = 54.6$ and compare it with the actual value.

(6 marks)

O



x: 1.5 2.0 2.5 3.0 3.5 4.0

y: 3.375 7.0 13.625 24.0 38.875 59.0

(6 marks)

(b) Apply (i) Trapezoidal rule; and (ii) Simpson's $\frac{1}{3}$ rule, to find an approximate value of $\int_{3}^{3} x^{4} dx$ by taking six equal subintervals. Compare it with the exact value.

(6 marks)

13. (a) Find $Z^{-1}\left(\frac{4z}{z-1^3}\right)$ by the long division method.

(6 marks)

(b) Solve $y_{n+1} + 4y_{n+1} + 3y_n = 3^n$ with $y_0 = 0$, $y_1 = 1$.

(6 marks)

Or

14. (a) Find the inverse Z-transform of
$$\frac{2(z^2-5z+6.5)}{(z-2)(z-3)^2}$$
 for $2<|z|<3$.

(6 marks)

(b) Solve
$$y_{n+2} - 2y_{n+1} + y_n = 3n + 5$$
.

(6 marks)

15. (a) Determine the generating function of the numeric function a_{r}

where $a_r = \begin{cases} 2^r, & \text{if } r \text{ is even} \\ 2^{-r}, & \text{if } r \text{ is odd} \end{cases}$

(6 marks)

(b) Solve the difference equation $a_r - 5a_{r-1} + 6a_{r-2} = 2^r + r$.

(6 marks)

16. (a) Determine the discrete numeric function corresponding to the generating function $A(z) = (1+z)^n + (1-z)^n$.

(6 marks)

(b) Determine the particular solution for the difference equation $a_r - 3a_{r-1} + 2a_{r-2} = 2^r$.

(6 marks)

- 17. (a) Expand $\frac{1}{z^2-3z+2}$ in the region (i) |z|<1; (ii) 1<|z|<2; (iii) |z|>2; (iv) 0<|z-1|<1. (9 marks)
 - (b) Determine the poles of the function $f(z) = \frac{z^2}{(z-1)^2(z+2)}$ and the residue at each pole.

COLEGE OF COLEGE

(3 marks)

Or

18. (a) Evaluate by contour integration $\int_{-\infty}^{\infty} \frac{x^2}{(x^2+1)(z^2+4)} dx$

(9 marks)

(b) Expand the function $\frac{1}{z+1}$, about z=1 in Taylor's series.

(3 marks)

- 19. (a) In a supermarket, the average arrival rate of customers is 10/hr. The average time taken at the bill and cash desk is 4.5 min. This time is exponentially distributed:
 - (i) How long will be customer expect to wait for service at the cash desk?
 - (ii) What is the chance that the queue length will exceed 5?
 - (iii) What is the probability that the cashier is working?

(7 marks)

(h) Explain the different service disciplines in the case of a queuing system.

(5 marks)

O

- 20. (a) In a railway marshalling yard, goods trains arrive at a rate of 30 trains per day. Assuming that the inter-arrival time follows an exponential distribution and the servicetime distribution is also exponential with an average 36 minutes. Calculate the following:—
 - (i) The mean queue size.
 - (ii) The probability thats the queue size exceeds 10.
 - (iii) If the input of trains increases to an average 33 per day, what will be the change in (i) and (ii).

(7 marks)

- (b) A T.V. repairmen finds that the time spent on his job has an exponential/distribution with mean 30 minutes. If the repaired set arrive on an average of 10 per 8-hour day with Poisson:
 - (i) What is the repairmen's idle time each day?
 - (ii) What is the average queue length?
 - (iii) Find average number of jobs in the system.

(5 marks)

 $[5 \times 12 = 60 \text{ marks}]$

Name.....

B.TECH. DEGREE EXAMINATION, NOVEMBER 2014

Fifth Semester

Branch: Common to all Branches except C.S. and I.T.

ENGINEERING MATHEMATICS - IV (CMELPASUF)

(Old Scheme—Supplementary/Mercy Chance)

[Prior to 2010 admissions]

Time: Three Hours

Maximum: 100 Marks

Answer all questions.

Each full question carries 20 marks.

- 1. (a) Using Cauchy's integral formula, evaluate $\int_C \frac{z+1}{z^2+2z+5} dz$ where C is the circle |z+1-i|=2, integration being taken in the counter clockwise direction.
 - (b) Expand $\frac{1}{z(z-1)(z-2)}$ in Laurent's series for |z| > 2.

Oı

- 2. (a) Evaluate $\oint_C \frac{z}{z(z-1)(z-2)^2} dz$, where C is the circle $|z-2| = \frac{1}{2}$.
 - (b) Evaluate by contour integration $\int_{0}^{\infty} \frac{x^2 dx}{(x^2 + 9)(x^2 + 4)^2}$.
- 3. (a) Find a root of the equation $x^6 x^4 x^3 = 1$ correct to three decimal places using Regula Falsi method.
 - (b) Solve by Gauss-Jacobi's method:

$$54x + y + z = 110$$

$$2x + 15y + 6z = 72$$

$$-x+6y+27z = 85.$$

- 4. (a) Find a root of $x^3 4x 9 = 0$ correct to three decimal places using Bisection method.
 - (b) Solve by Gauss-Seidel method:

$$10x_1 - 5x_2 - 2x_3 = 3$$

$$4x_1 - 10x_2 + 3x_3 = -3$$

$$x_1 + 6x_2 + 10x_3 = -3.$$

- 5. (a) Using Taylor's series method solve $\frac{dy}{dx} = x^2 y$, y(0) = 1 at x = 0.1, 0.2, 0.3 and 0.4.
 - (b) Use Runge-Kutta method to solve $\frac{dy}{dx} = x^2 x^2$, y(1) = 1.5 at x = 1.2 in steps of 0.1.

Or

- 6. (a) Taking h = 0.05 and applying modified Euler's method, solve the initial value problem $y' = x^2 + y, y(0) = 1$, obtain y(0.1).
 - Using Milne's predictor-corrector method solve the initial value problem $\frac{2dy}{dx} = \left(1 + x^2\right)y^2, y(0) = 1 \text{ and obtain } y \text{ (0.4)}. \text{ Use the solution values :}$ y(0.1) = 1.06, y(0.2) = 1.12, y(0.3) = 1.21.
- 7. (a) Given $Z(u_n) = \frac{2z^2 + 3z + 4}{(z-3)^3}$, |z| > 3, show that $u_1 = 2, u_2 = 21, u_3 = 139$.
 - (b) Solve $x_{n+1} y_n = 1, y_{n+1} x_n = 0, x_0 = 0, y_0 = -1$.

Or

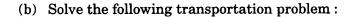
- 8. (a) Find the z-transform of:
 - (i) $e^{4t} \sin 3t$.
 - (ii) $(t+T)e^{-(t+T)}$.
 - (iii) $4^n + \left(\frac{1}{2}\right)^n + u(n-3)$.
 - (b) Find the inverse z-transform of $\frac{4z^2 2z}{z^3 5z^2 + 8z 4}$

9. (a) Solve the following L.P.P. by simplex method:

Maximize
$$Z = x_1 + 2x_2 + 3x_3 - x_4$$

subject to
$$x_1 + 2x_2 + 3x_3 = 15$$

 $2x_1 + x_2 + 5x_3 = 20$
 $x_1 + 2x_2 + x_3 + x_4 = 10$.



		D	Avail			
		$\mathbf{D_1}$	$\mathbf{D_2}$	D_3	\mathbf{D}_4	
	O_1	- 5	3	6	2	19
Origin	O_2	4	7	9	1	37
	O ₃	3	4	7	5	34
Requ	iire	16	18	31	25	
						Or

10. (a) Using the duality theory, solve the L.P.P.:

Minimize
$$Z = 3x_1 - 2x_2 + 4x_3$$

subject to
$$3x_1 + 5x_2 + 4x_3 \ge 7$$

 $6x_1 + x_2 + 3x_3 \ge 4$
 $7x_1 - 2x_2 - x_3 \le 10$
 $x_1, x_2, x_3 \ge 0$.

(b) Apply Vogel's method to find the transportation cost to the following transportation model:

	1	2	3	4	
1	10 ,	2	20	11	15
2	12	7	9	20	25
3	4	14	16	18	10
	5	15	15	15	

 $(5 \times 20 = 100 \text{ marks})$

Reg.	No	••
------	----	----

Name.....

B.TECH. DEGREE EXAMINATION, NOVEMBER 2014

Fifth Semester

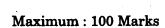
Branch: Common to all Branches except C.S. and I.T.

ENGINEERING MATHEMATICS - IV (CMELPASUF)

(Old Scheme—Supplementary/Mercy Chance)

[Prior to 2010 admissions]

Time: Three Hours



Answer all questions.

Each full question carries 20 marks.

- 1. (a) Using Cauchy's integral formula, evaluate $\int_{C}^{\infty} \frac{z+1}{z^2+2z+5} dz$ where C is the circle |z+1-i|=2, integration being taken in the counter clockwise direction.
 - (b) Expand $\frac{1}{z(z-1)(z-2)}$ in Laurent's series for |z| > 2.

Oı

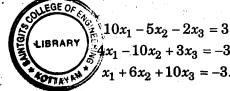
- 2. (a) Evaluate $\oint_C \frac{z}{z(z-1)(z-2)^2} dz$, where C is the circle $|z-2| = \frac{1}{2}$.
 - (b) Evaluate by contour integration $\int_{0}^{\infty} \frac{x^2 dx}{(x^2+9)(x^2+4)^2}$.
- 3. (a) Find a root of the equation $x^6 x^4 x^3 = 1$ correct to three decimal places using Regula Falsi method.
 - (b) Solve by Gauss-Jacobi's method:

$$54x + y + z = 110$$

$$2x + 15y + 6z = 72$$

$$-x+6y+27z = 85.$$

- 4. (a) Find a root of $x^3 4x 9 = 0$ correct to three decimal places using Bisection method.
 - (b) Solve by Gauss-Seidel method:



- 5. (a) Using Taylor's series method solve $\frac{dy}{dx} = x^2 y$, y(0) = 1 at x = 0.1, 0.2, 0.3 and 0.4.
 - (b) Use Runge-Kutta method to solve $\frac{dy}{dx} = x^2 x^3$, y(1) = 1.5 at x = 1.2 in steps of 0.1.

Or

- 6. (a) Taking h = 0.05 and applying modified Euler's method, solve the initial value problem $y' = x^2 + y, y(0) = 1$, obtain y(0.1).
 - (b) Using Milne's predictor-corrector method solve the initial value problem $\frac{2dy}{dx} = \left(1 + x^2\right)y^2, y(0) = 1 \text{ and obtain } y \text{ (0.4)}. \text{ Use the solution values :}$ y(0.1) = 1.06, y(0.2) = 1.12, y(0.3) = 1.21.
- 7. (a) Given $Z(u_n) = \frac{2z^2 + 3z + 4}{(z-3)^3}$, |z| > 3, show that $u_1 = 2, u_2 = 21, u_3 = 139$.
 - (b) Solve $x_{n+1} y_n = 1, y_{n+1} x_n = 0, x_0 = 0, y_0 = -1$.

Or

- 8. (a) Find the z-transform of:
 - (i) $e^{4t} \sin 3t$.
 - (ii) $(t+T)e^{-(t+T)}$.
 - (iii) $4^n + \left(\frac{1}{2}\right)^n + u(n-3)$.
 - (b) Find the inverse z-transform of $\frac{4z^2 2z}{z^3 5z^2 + 8z 4}$.

9. (a) Solve the following L.P.P. by simplex method:

$$\text{Maximize}\,\mathbf{Z}=x_1+2x_2+3x_3-x_4$$

subject to
$$x_1 + 2x_2 + 3x_3 = 15$$

 $2x_1 + x_2 + 5x_3 = 20$
 $x_1 + 2x_2 + x_3 + x_4 = 10$.

(b) Solve the following transportation problem:

		D	Destination			
		$\mathbf{D_1}$	$\mathbf{D_2}$	\mathbf{D}^3	$\mathbf{D_4}$	
	O_1	5	3	6	2	19
Origin	O_2	4	7	9	1	37
	O_3	3	4	7 ,	5	34
Requ	ire	16	18	31	25	
						0-

Or

10. (a) Using the duality theory, solve the L.P.P.:

Minimize
$$Z = 3x_1 - 2x_2 + 4x_3$$

subject to
$$3x_1 + 5x_2 + 4x_3 \ge 7$$

 $6x_1 + x_2 + 3x_3 \ge 4$
 $7x_1 - 2x_2 - x_3 \le 10$
 $x_1, x_2, x_3 \ge 0$.

(b) Apply Vogel's method to find the transportation cost to the following transportation model:

	1	2	3	4	
1	10	2	20	11	15
2	12	7	9	20	25
3	4	14	16	18	10
	5	15	15	15	

 $(5 \times 20 = 100 \text{ marks})$