Reg. No	10	TE SE
2008. 2 (0	ASA ASA	HARY
Name		AYAM

B.TECH. DEGREE EXAMINATION, MAY 2015

Fourth Semester

Branch: Applied Electronics and Instrumentation Engineering

AI 010 405 - SIGNAL COMMUNICATION (AI)

(New Scheme – 2010 Admission onwards)

[Regular/Improvement/Supplementary]

Time: Three Hours

Maximum: 100 Marks

Part A

Answer all questions.

Each question carries 3 marks.

- 1. Define the terms modulation and demodulation.
- 2. Explain external noise and internal noise.
- 3. What do you mean by aliasing error?
- 4. What are the disadvantages of using optical fibers in telecommunication?
- 5. What is an active satellite?

 $(5 \times 3 = 15 \text{ marks})$

Part B

Answer all questions.

Each question carries 5 marks.

- 6. Describe the needs of wireless telemetery.
- 7. Explain the concept of noise spectrum.
- 8. Define slope over load and granular noise.
- 9. Differentiate single tone and multi tone fibers.
- 10. What are the disadvantages of Geostationary Satellites?

 $(5 \times 5 = 25 \text{ marks})$

Part C

Answer all questions.

Each full question carries 12 marks.

11. Explain in detail the issues related to long distance transmission.

Or

- 12. Draw the block diagram of a digital communication system and explain the function of each block.
- 13. Describe the considerations of filter selection for suppression of noise.

Or

- 14. Define thermal noise and describe its relation to temperature and bandwidth.
- 15. With the help of neat diagrams, explain the transmitter and receiver of pulse code modulation.

Or

- 16. (a) Describe the concept of FDM as employed in telemetry.
 - (b) What are IRG standards? Explain their applications.
- 17. With the help of block diagram, explain optical fiber communication system.

Or

- 18. Write the principle of operation of pn detector.
- 19. Describe with neat block diagram of a satellite down link model.

Or

20. Write a neat block diagram, explain a satellite communication system.

 $(5 \times 12 = 60 \text{ marks})$