769A4 Total Pages: **3**

Register No.: Name:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

FOURTH SEMESTER B.TECH DEGREE EXAMINATION (S), SEPT 2022 **ELECTRONICS AND COMMUNICATION ENGINEERING** (2020 SCHEME)

Course Code: 20ECT204

Course Name: Signals and Systems

Max. Marks: 100 **Duration: 3 Hours**

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Sketch the following signals.
 - i) 2u(t+2) 2u(t-3)
- ii) r(0.25t + 1)
- Check whether the following signals are periodic or not. If periodic, find the fundamental 2. period.
 - $i) \sin(10t + 1) 2\cos(5t 2)$
- ii) $sin10\pi t + cos20\pi t$
- 3. State and prove time convolution theorem.
- 4. Find the convolution of $x_1(t)=e^{-2t}u(t) & x_2(t)=e^{-4t}u(t)$.
- Find the Fourier transform of signum function. 5.
- 6. State sampling theorem for a low pass filter.
- 7. State and prove initial value theorem of Laplace Transform.
- 8. Find the Laplace transform of a ramp function.
- 9. Derive the relation between Z transform and DTFT.
- Find the Z transform of $x(n) = -a^n u(-n-1)$. 10.

PART B

(Answer one full question from each module, each question carries 14 marks)

MODULE I

Check whether the following signals are static or dynamic, linear or nonlinear, 11. a) (8) casual or non-casual, time variant or time invariant.

$$i) \frac{d^2 y(t)}{dt^2} + 2y(t) \frac{dy(t)}{dt} + 3ty(t) = x(t) \qquad ii) \ y(n) = x(n) * x(n-2)$$

(6)

Find the even and odd components of the signal. b)

$$i) x(n) = \{-3,1,2,-4,2\}$$

$$ii) x(t) = sin2t + cos2t$$

OR

- 12. a) Determine whether the following signals are energy or power and calculate their (8) energy or power.
 - i) x(t) = tu(t)
- $ii) x(t) = Ae^{-at}u(t), a > 0$
- $iii) x(t) = e^{-3t}u(t)$

(6)

(8)

(6)

(6)

(8)

- b) Check whether the following signals are periodic or not.
 - $i) x(t) = 2\cos(10t + 1) \sin(4t 1)$
 - $ii) x(t) = 3cos4t + 2sin\pi t$
 - *iii*) $x(n) = e^{\frac{j2\pi n}{3}} + e^{\frac{j3\pi n}{4}}$

MODULE II

- 13. a) From the given impulse response, find whether the systems are causal and (8) stable.
 - *i*) $h(n) = e^{2n}u(n-1)$ *ii*) $h(n) = 5^nu(3-n)$
 - b) Determine the response y(n), if $x(n) = \{1, 2, 3, 2\}$ $h(n) = \{1, 2, 2\}$. (6)

OR

- 14. a) Find the convolution of the following signals.
 - i) $x_1(t) = e^{-3t}u(t) \& x_2(t) = u(t+3)$
 - *ii*) $x_1(t) = r(t) \& x_2(t) = e^{-2t}u(t)$
 - b) Determine whether the following impulse responses are causal and/or stable.
 - $i) h(t) = e^{-2t}u(t+100)$
- $ii)h(t) = te^{-t}u(t)$

MODULE III

- 15. a) Consider a causal LTI system with impulse response $h(t) = e^{-4t}u(t)$. Find (8) i) the output of the system for an input $x(t) = 3e^{-t}u(t)$.
 - ii) Frequency response of the system.
 - b) Find the trigonometric Fourier series for the given waveform.

OR

- 16. a) Find the trigonometric Fourier series of the following waveform.

- b) Using properties of Fourier transform,
 - i) find the fourier transform of $x(t) = e^{-3t}u(t-2)$.
 - ii) find the convolution of

$$x_1(t) = te^{-t}u(t)$$
 $x_2(t) = te^{-2t}u(t)$.

MODULE IV

- 17. a) Show that the spectrum of the sampled signal is the infinite sum of shifted (6) replicas of spectrum of original signal.
 - b) Obtain the Laplace transform and ROC of the following signals. (8)

i)
$$x(t) = e^{-2t}u(-t) + e^{-3t}u(-t)$$

$$ii) x(t) = e^{-t}u(t) + e^{-4t}u(t)$$

OR

- 18. a) For the transfer function $H(S) = \frac{S+5}{S^2+3S+2}$. Find the response due to input (6) x(t) = cos2tu(t).
 - b) Find the Nyquist sampling rate and sampling interval for (8)
 - i) $x(t) = \frac{1}{2} sinc(100\pi t) + \frac{1}{3} sinc(50\pi t)$
 - $ii)x(t) = -10\sin(40\pi t)\cos(300\pi t).$

MODULE V

- 19. a) A system has impulse response $h(n) = \left(\frac{1}{3}\right)^n u(n)$. Determine the transfer (8) function and frequency response of the system. Also determine the input of the system if the output is given by $y(n) = \frac{1}{2}u(n) + \frac{1}{4}\left(\frac{-1}{3}\right)^n u(n)$.
 - b) Find the DTFT of the following signals. $i) x(n) = (0.5)^n u(n) + 2^n u(-n-1)$ $ii) x(n) = \left(\frac{1}{2}\right)^n \sin\left(\frac{n\pi}{4}\right) u(n).$ (6)

OR

- 20. a) Find the Z transform and ROC of the following signals. (8) $i) x(n) = (\frac{1}{2})^n u(-n) 2^n u(-n-1)$
 - *ii*) $x(n) = (\frac{1}{2})^n u(n) * (\frac{1}{4})^n u(n)$.
 - b) A causal system has the property that $(\frac{4}{5})^n u(n) \longrightarrow n(\frac{4}{5})^n u(n)$. (6)
 - i) Determine the frequency response $H(\omega)$ for the system.
 - ii) Determine a difference equation relating an input x(n) and the corresponding output y(n).
