Reg. No....

Name.....

B.TECH. DEGREE EXAMINATION, NOVEMBER 2014

Third Semester

Branch : Applied Electronics and Instrumentation/ Electronics and Communication Engineering

AI 010 304 EC 010 304 SOLID STATE DEVICES (AI, EC)

(New Scheme—2010 Admission onwards)

[Regular/Improvement/Supplementary]

Time: Three Hours

Maximum: 100 Marks

Part A

Answer all questions briefly. Each question carries 3 marks.

- 1. Explain direct and indirect band-gap semiconductors with examples.
- 2. Explain diffusion and drift currents in semiconductor with the help of expressions.
- 3. Define delay time, rise time and fall time in switching diode.
- 4. Define injection efficiency and transport factor of a BJT. How they are related to α and β ?
- 5. Distinguish between Enhancement and Depletion mode MOSFETs.

 $(5 \times 3 = 15 \text{ marks})$

Part B

Answer all questions.

Each question carries 5 marks.

- 6. A silicon sample is doped with 5×10^{16} Arsenic atoms/cc and 3×10^{16} Boron atoms/cc. Determine (i) electron and hole concentrations at room temperature; and (ii) position of Fermi level. Assume $n_i = 1.5 \times 10^{10}$ /cc at room temperature.
- 7. Calculate the contact potential of a PN junction diode having $N_A = 2 \times 10^{16}/cc$ and $N_D = 5 \times 10^{13}/cc$ at $T = 300^{\circ}$ K. Take $n_i = 1.5 \times 10^{10}/cc$.
- 8. A silicon abrupt pn junction at 300 K has $N_A = 2 \times 10^{16}/cc$ and $N_D = 5 \times 10^{13}/cc$. The area of cross-section is 10^{-5} cm.² Calculate the junction capacitance. $\epsilon_0 = 8.854 \times 10^{-14}$, $\epsilon_r = 11.8$, $n_i = 1.5 \times 10^{10}/cc$.
- 9. What are the different modes of operations of a transistor? Plot minority carrier distribution for PNP transistor in all modes.
- 10. Explain channel length modulation in MOSFET.

 $(5 \times 5 = 25 \text{ marks})$

Turn over

Part C

Each full question carries 12 marks.

11. Derive:

(i)
$$n_o = n_i e^{\left(\frac{\mathbf{E_F} - \mathbf{E_i}}{\mathbf{KT}}\right)}$$
; (ii) $p_o = n_i e^{\left(\frac{\mathbf{E_i} - \mathbf{E_F}}{\mathbf{KT}}\right)}$.

(6 + 6 = 12 marks)

Or

- 12. Derive the continuity equations for holes and electrons in a semiconductor. State the assumptions made.
- 13. Sketch and explain formation of space charge region in a PN junction. Also plot charge density, electric field, barrier potential and energy band diagram under thermal equilibrium and explain.

Or

- 14. What is a P+N diode? Derive expression for its depletion, region width. If for an abrupt P+N diode, $N_D = 6 \times 10^{14}/\text{cc}$, $V_{BR} = 500 \text{ volt}$, $\epsilon_r = 12.4$, $\epsilon_0 = 8.854 \times 10^{-14}$, calculate the depletion region width.
- 15. With neat sketches, explain the working and characteristics of:
 - (i) Zener diode.
 - (ii) Schottky barrier diode.
 - (iii) Photodiodes.

 $(3 \times 4 = 12 \text{ marks})$

Or

- 16. A 0.45 μ m, thick sample of GaAs is illuminated with monochromatic light of $h\nu = 2$ eV. The absorption coefficient is 5×10^4 /cm. The power incident on the sample is 10 mW.
 - (i) Calculate the total energy absorbed by the sample per second (J/S).
 - (ii) Find the rate of excess thermal energy given up by the electrons to the lattice before recombination (J/S).
 - (iii) Find the number of photons per second given off from recombination events assuming perfect quantum efficiency.

 $(3 \times 4 = 12 \text{ marks})$

- 17. With necessary diagrams, explain:
 - (i) Effect of base narrowing in BJT.
 - (ii) Punch through effect.
 - (iii) Emitter crowding.

 $(3 \times 4 = 12 \text{ marks})$

- 18. With neat sketches, explain the shape of depletion region, with a cross-sectional view of JFET. Explain pinch-off, saturation and the effect of negative gate bias with the help of VI characteristics.
- 19. (a) With neat constructional diagram and energy band diagrams, explain MOS capacitor.
 - (b) Calculate the maximum width of the depletion region for an ideal MOS capacitor on p-type silicon with $N_A = 10^{16}/CC$, $n_i = 1.5 \times 10^{10}/CC$. $\epsilon_r = 11.8$, $\epsilon_0 = 8.854 \times 10^{-14}$.

(7 + 5 = 12 marks)

Or

20. With neat constructional diagram and characteristic curves, explain the working of IGBT. What are its merits compared to conventional transistors?

 $(5 \times 12 = 60 \text{ marks})$