Register No.: Name:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

FIRST SEMESTERB.TECH DEGREE EXAMINATION (Regular), FEBRUARY 2022 COMMON TO ALL BRANCHES (2020 SCHEME)

Course Code: 20MAT101

Course Name: Linear Algebra and Calculus

Max. Marks: 100 Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Determine the rank of the matrix $A = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 1 & -1 \\ 2 & -1 & 0 \end{bmatrix}$
- 2. Reduce the quadratic form $-3x_1^2 3x_2^2 3x_3^2 2x_1x_2 2x_1x_3 + 2x_2x_3$ into the principal axes form.
- 3. Find $\frac{dz}{dx}$ at (1,0) if $z = x^2 + 2xy + 4y^2$ and $y = e^{ax}$.
- 4. Calculate $f_x(1,2)$ and $f_y(1,2)$ where $f(x,y) = \sqrt{x^2 + 4y^2}$.
- 5. Evaluate $\iint_R e^{-(x^2+y^2)} dA$, where *R* is the region enclosed by the circle $x^2 + y^2 = 1$.
- 6. Evaluate $\int_0^1 \int_0^2 \int_0^3 xyz \ dx \ dy \ dz$.
- 7. Determine the rational number representing the decimal number 6.242424 ...
- 8. Test the convergence of $\sum_{k=1}^{\infty} \frac{1}{2^k+1}$.
- 9. Find the Taylor series for $f(x) = \cos x$ about $x = \frac{\pi}{2}$.
- 10. Obtain the half range Fourier sine series expansion of f(x) = c in $(0, \pi)$.

PART B

(Answer one full question from each module, each question carries 14 marks)

MODULE I

11. a) Consider the system of equations

$$x + y + z = l$$

$$3x + 4y + 5z = m$$

$$2x + 3y + 4z = k$$
(6)

Show that the given system of equations has no solution if l=m=k=1 and have many solutions if $l=\frac{m}{2}=k=1$.

b) What type of conic section does the quadratic form

$$4x_1^2 + 6x_1x_2 - 4x_2^2 = 10$$
 represents? Express $\binom{x_1}{x_2}$ in terms of new (8) coordinates.

OR

12. a) Using Gauss elimination, solve the system

$$x + 2y + z = 3$$

$$2x + 3y + 2z = 5$$

$$3x - 5y + 5z = 2$$

$$3x + 9y - z = 4$$
(6)

b) Diagonalize the matrix

$$A = \begin{bmatrix} 1 & -3 & 3 \\ 0 & -5 & 6 \\ 0 & -3 & 4 \end{bmatrix} \tag{8}$$

MODULE II

13. a) If
$$u = f(x - y, y - z, z - x)$$
, evaluate $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z}$. (6)

b) Locate all relative extrema and saddle points (if any) of $u(x,y) = x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x.$ (8)

OR

14. a) If
$$v = x^y$$
, show that $\frac{\partial^3 v}{\partial x^2 \partial y} = \frac{\partial^3 v}{\partial x \partial y \partial x}$. (6)

b) Find the maxima and minima of $x^3 + y^3 - 3axy$. (8)

MODULE III

- 15. a) Evaluate $\int_0^1 \int_{x^2}^{2-x} xy \, dy dx$ by changing the order of integration. (6)
 - b) Use triple integral to find the volume of the solid in the first octant bounded by the coordinate planes and the plane 3x + 6y + 4z = 12. (8)

OR

- 16. a) Find the area of the plane region enclosed by the given curves $y = \sin x$ and $y = \cos x$ for $0 \le x \le \frac{\pi}{4}$.
 - b) Using triple integrals find the volume of the cylinder $x^2 + y^2 = 4$ bounded by the planes z = 0 and z = 3. (8)

MODULE IV

- 17. a) Test the convergence of the series $\sum_{k=1}^{\infty} \frac{(k+5)!}{5!k!5^k}$. (6)
 - b) Find the sum of the series $\sum_{n=1}^{\infty} \frac{1}{9n^2 + 3n 2}$. (8)

OR

- 18. a) Determine whether the series $\sum_{k=1}^{\infty} \frac{(-1)^{k+1} k^k}{k!}$ is absolutely convergent or not (6)
 - b) Examine the convergence of $\frac{1}{4\cdot 6} + \frac{\sqrt{3}}{6\cdot 8} + \frac{\sqrt{5}}{8\cdot 10} + \cdots$ (8)

MODULE V

- 19. a) Find the Maclaurin series expansion for the function $\cos x$. (6)
 - b) Find the Fourier sine series for $f(x) = |sin x|, -\pi < x < \pi$. (8)

OR

- 20. a) Find the half range Fourier sine series representation of f(x) = x in (0,2) (6)
 - Find the Fourier series for $f(x) = \begin{cases} 0, -\pi < x < 0 \\ \pi, 0 < x < \pi \end{cases}$ and deduce that $1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \dots = \frac{\pi}{4}$

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$$
 (8)
