

QP CODE: 19101592

Reg No	:	
Name		

BCA DEGREE (CBCS) EXAMINATION, MAY 2019

Fourth Semester

Bachelor of Computer Application

Complementary Course - MM4CMT03 - OPERATIONS RESEARCH

2017 ADMISSION ONWARDS

BE49AE19

Maximum Marks: 80 Time: 3 Hours

Part A

Answer any ten questions.

Each question carries 2 marks.

- 1. What is operation research?
- 2. Explain the use of OR in Agriculture field.
- 3. How OR is useful to the personnel management.
- What you mean by Iconic model.? Give any 2 examples.
- 5. What are the uses of linear programming in management?
- 6. Define objective function. What you mean by constraints.
- What you mean by degeneracy in LPP.
- 8. What you mean by Non- Degenerate basic feasible solution in Transportation Problem.
- 9 How to convert a Maximisation transportation problem to Minimisation?
- 10. What you mean by unbalanced assignment problem?
- 11 Define saddle point.
- 12. What is two person zero sum game.

 $(10 \times 2 = 20)$

Part B

Answer any six questions.

Each question carries 5 marks.

- 13 Discuss four characteristics of operation research
- 14. Explain the nature of operation research and its limitation

Page 1/3 Turn Over

15. Solve graphically the following problem

$$x \ge 600$$

$$x \ge 0y \ge 0$$

16. Show that the solution to the following L.P.P. is unbounded

$$x \ge 0, y \ge 0$$

17. Find the intial bfs to the transportation problem given below, by northwest corner rule

Destination					
Origins	D1	D2	D3	Supply	
01	2	7	4	5	
O2	3	3	1	8	
O3	5	4	7	7	
O4	1	6	2	14	
Demand	7	9	18		

18. Find the intial basic feasible solution of the following transportation problem using the Vogel's Approximation method

	D1	D2	D3	D4	Supply
01	6	4	1	5	14
02	8	9	2	7	16
03	4	3	6	2	5
Demand	6	10	15	4	35

19. Three accountants are to be assigned to three projects. The assignment costs in units of \$1000 are in the table below:

Projects				
	P1	P2	P3	
A1	15	9	12	
A2	7	5	10	
А3	13	4	6	

Give assignments so that the total cost is minimum

- 20. What are the assumptions of a game?
- 21. Solve the game by probability method.

$$PlayerA\begin{bmatrix} 8 & 5 \\ 2 & 6 \end{bmatrix}$$

(6×5=30)

Part C

Answer any two questions.

Each question carries 15 marks.

22. Solve the following L. P problem using Big M method Min $Z=3X_1+8X_2$

Subject to
$$x_1 + x_2 = 200$$

 $x \le 20$

$$x_1 \ge 0, x_2 \ge 0$$

23. Find the optimal solution of the following TP

Destinations					
Origin	А	В	С	D	Supply
1	1	5	3	3	34
2	3	3	1	2	15
3	0	2	2	3	12
4	2	7	2	4	19
Demand	21	25	17	17	

^{24.} a)Define Assignment problem. What you mean by effective matrix of an assignment problem. Write the mathematical representation of an assignment problem.

b)

Job					
Workers		х	у	z	
	А	18	17	16	
	В	15	13	14	
	С	19	20	21	

Formulate this assignment problem as an LPP.

- 25. (a) Explain the principle of dominance in game theory.
 - (b) Solve the game whose pay off matrix is given by

$$PlayerA \begin{bmatrix} 2 & 4 & 3 & 4 \\ 5 & 6 & 3 & 8 \\ 6 & 7 & 9 & 7 \\ 4 & 2 & 8 & 3 \end{bmatrix}$$

(2×15=30)

