

Pages 3

Scheme of Valuation/Answer Key
(Scheme of evaluation (marks in brackets) and answers of problems/key)

ADI ARDIH KALAM TECHNOLOGICAL HNIVEDSITV

		APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY SIXTH SEMESTER B.TECH DEGREE EXAMINATION, May 2019		
		Course Code: EC302		
		Course Name: Digital Communication		
M	Max. Marks: 100 Duration: 3 H			
		PART A Answer any two full questions, each carries 15 marks	Marks	
1	a)	Proof-8	(8)	
	b)	Mean square Value= 13	(4)	
	c)	$G(f) = \operatorname{rect}\left(\frac{t}{100}\right) * \operatorname{rect}\left(\frac{t}{100}\right)$	(3)	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
2	a)	Impulse response-3, frequency response-3	(6)	
	b)	Frequencies appearing the output of LPF are 180, 200, 300, and 320 Hz	(5)	
	c)	Line coding schemes-4	(4)	
		OR	. 	
3	a)	Raised cosine spectrum, Expression in frequency domain-2, Time domain-2	(4)	
	b)	bit rate for DM, $r_{\rm DM}=604~{\rm kbps}$. $r_{\rm PCM}=64~{\rm kbps}.$ Thus, to transmit the same voice signal, DM needs a very large bit rate. Hence, PCM is chosen for this application.	(5)	
	c)	Slope Overload Error and Condition for avoiding SoE -4, granular noise-2	(6)	
		PART B		
		Answer any two full questions, each carries 15 marks		

		Page	s 3
4	a)	$\phi_1(t)$	(7)
		$\frac{1}{\sqrt{T}}$	
		$\frac{1}{2}$	
		$\frac{T}{2}$ T t -1	
		$\frac{1}{\sqrt{T}}$	
		Fig. 6.9 Plot for $\phi_1(t)$ and $\phi_2(t)$	
	b)	Mean-2, variance-3	(5)
	c)	MAP rule-1.5, ML Rule-1.5	(3)
5	a)	BER = $\frac{1}{2} \operatorname{erfc} \left(\sqrt{\frac{E_b}{N_0}} \right)$, Derivation-6	(8)
	b)	Constallation diagram for QPSK-2, QPSK generation-2, QPSK detection-3	(7)
6	a)	Explanation-3 Derivations-5	(8)
0	b)	Explanation-5 Derivations-5	(7)
	-,	$P_e = \frac{1}{2}\operatorname{erfc}\left(\sqrt{\frac{E_b}{2N_0}}\right)$, Derivation-5	
		PART C	
ı		Answer any two full questions, each carries 20 marks	
7	a)	Block diagram for FHSS-3, Explaination-3, SHFSS-2, FHFSS-2	(10)
	b)	Jamming Margin-4	(4)
	c)	(a) PN sequence length $= 2^m - 1$	(6)
		$=2^{10}-1$	
		= 1023	
		(b) Chip duration, $T_c = \frac{1}{10^7}$	
		$=0.1\mu\text{s}$	
		(c) Time period of PN sequence, $T = 1023 \times 0.1 \mu s$	
		$=102.3~\mu s.$	
8	a)	flat fading-2.5, frequency selective fading-2.5	(5)
	b)	Different diversity techniques-10	(10)

	c)	PG $= \frac{T_b}{T_c} = \frac{R_c}{R_b}$ $= \frac{12 \times 10^6}{6 \times 10^3} = 2000$	lages 3	(5)
		$(PG)_{dB} = 10 \log_{10} 2000$ = 33 dB.		
		Jamming Margin, $(JM)_{dB} = (PG)_{dB} - 10 \log \left(\frac{E_b}{N_0}\right)$		
		$= 33 - (SNR)_{dB}$		
		=33-10		
		= 23 dB.		
9	a)	Block diagram for Rake Receiver-5, Explanation-5	((10)
	b)	Block diagram for OFDM-4, Explanation-6	((10)
